
Nets

The filter theory of convergence in general topology seems to be most often studied
but there is another approach to convergence: nets. Nets are a generalization of sequences
and, for those coming to topology after analysis, make possible analogous thinking which
can seem more intuitive. Nets have the disadvantage of requiring an external structure, a
directed set, which seems extraneous to the topological framework.

This summary lists only definitions and results used on this website. Proofs, examples,
and material not used here including the connections between nets and filters can be found
in [1] or [2].

Definition P4.1 Let D be a set and ≤ a relation on D. (D,≤) (often just D) is a
partially ordered set provided ≤ is reflexive and transitive.

Note that the definition does not require the antisymmetric property. Examples which
are not antisymmetric sometimes occur.

Definition P4.2 Let (D,≤) be a non-empty partially ordered set. D is a directed
set provided, for any a, b ∈ D, there is c ∈ D with a ≤ c and b ≤ c.

The property in the previous definition is sometimes referred to as the directed set
property.

Definition P4.3 Let X be a set. A net in X is a function from a directed set into
X.

Every sequence is a net. Given a net S : D → X, the net may described in quasi-
sequential notation as {xd} where d ∈ D and xd = S(d).

Definition P4.4 Let (X, τ ) be a topological space and let S : D → X be a net in
X. Let x0 ∈ X. S converges to x0 (often S → x0 or {xd} → x0) if and only if, for every
O ∈ τ with x0 ∈ O, there dO ∈ D such that, for every d ∈ D, d ≥ dO implies S(d) ∈ O.

The property there is dO ∈ D such that, for every d ∈ D, d ≥ dO implies S(d) ∈ O

can be expressed by saying S is eventually in O. Thus S → x0 means S is eventually in
every open set containing x0, i.e., eventually in every neighborhood of x0.

If a net S converges to x0, x0 is said to be a limit of S.
In calculus the definition of the Reimann integral can be thought of as an example

of net convergence, with the directed set being the collection of partitions of an interval
ordered by the partition norm. The ordering in this example is not antisymmetric.

Proposition P4.5 Let (X, τ ) be a topological space and let A ⊆ X. Let b ∈ X.
Then b ∈ A (the closure of A in X) if and only if there is S, a net in A, such that S → b.

Note that nets converging to different points of the closure may be maps from different
directed sets.

Proposition P4.6 Let (X, τ ) be a T2 topological space and let S : D → X be a net
in X. Assume S → x and S → y, where x, y ∈ X. Then x = y.

The previous fact is often expressed by saying that in a T2 space a convergent net has
a unique limit.

Proposition P4.7 Let (X, τ ) and (Y, σ) be topological spaces and let f : X → Y be
continuous. Assume S is a net in X converging to x0 ∈ X. Then the net f ◦ S converges
to f(x0).

Definition P4.8 Let E,D be directed sets and let T : E → D. T is finalizing if and
only if for every d0 ∈ D there is e0 ∈ E such that e ≥E e0 implies T (e) ≥D d0.
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The defining condition for a finalizing map can be expressed as for every d0 ∈ D

eventually T (e) ≥D d0. The subscripts in the definition emphasize that there can be two
different ordering relations, but in practice those subscripts are dropped unless necessary
for clarity. A finalizing map is also called a map with the subnet property.

Definition P4.9 Let S : D → X be a net. A subnet of S is a map S ◦ T where
T : E → D is a finalizing map.

A subsequence of a sequence is a subnet, but a subnet of a sequence need not be a
subsequence. In quasi-sequential notation a subnet of {xd} may be written {xde

} where
e ∈ E, de = T (e), and xde

= S(T (e)).
Proposition P4.10 Let (X, τ ) be a topological space, let x0 ∈ X, and let S : D → X

be a net with S → x0. Let T : E → D be a finalizing map. Then S ◦ T → x0.
Many prefer to express P4.10 with less notation as follows.
Corollary P4.11 Let (X, τ ) be a topological space. Every subnet of a convergent

net S in X converges to the limit of S.
Definition P4.12 Let (X, τ ) be a T2 topological space and let S : D → X be a net

in X. A point x0 ∈ X is a cluster point of S provided, for every O ∈ τ with x0 ∈ O and
for every d ∈ D, there is d∗ ∈ D with d∗ ≥ d such that S(d∗) ∈ O.

The property that, for every d ∈ D, there is d∗ ∈ D with d∗ ≥ d such that S(d∗) ∈ O

is also expressed as S is frequently in O.
Proposition P4.13 Let (X, τ ) be a topological space, let S : D → X be a net in X

and let x0 ∈ X be a cluster point of S. Then S has a subnet converging to x0.
Proposition P4.14 Let (X, τ ) be a compact topological space and let S : D → X

be a net in X. Then S has a cluster point in X.
Corollary P4.15 Let (X, τ ) be a compact topological space. Then every net in X

has a convergent subnet.
The idea of a Cauchy net in a uniform space is defined in P2.5.
Proposition P4.16 Let (X,U) be a uniform space and let S : D → X be a τ (U)-

convergent net. Then S is a U-Cauchy net.
Proposition P4.17 Let (X,U) and (Y,V) be a uniform spaces. Let S : D → X be

a U-Cauchy net and suppose f : (X,U) → (Y,V) is uniformly continuous. Then f ◦ S is a
V-Cauchy net.
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