
Order Compactifications

In this section a totally bounded uniformity associated with a linearly ordered set will
be constructed and some propreties of the associated compactification derived. The idea
is quite simple and undoubtedly known, although I have no specific reference.

Let X be assumed to be a set linearly ordered by <. Standard variations on the
order, that is, >,≤,≥ will have the expected meanings. Given a, b ∈ X, sets of the forms
[a, b], [a, b), (a, b], (a, b), (−∞, a], [a,∞), (−∞, a), and (a,∞) will have the usual meanings
and, if non-empty, will be called intervals. The last four types will also be called rays,
possibliy left or right, and the last two types open rays. The order topology for X is the
topology with a subbasis consisting of X and all open rays. τ (<) will denote the order
topology for X. Intervals of the form (a, b), (a,∞) or (−∞, b) are always open sets. The
other types of interval may or may not be in τ (<), depending on the order. An open
interval means an interval which is in τ (<).

In the terminology used here, all intervals must have at least one endpoint in X, with
rays having one endpoint and other intervals two. Note that the endpoints of an interval
need not be distinct ([x, x] = {x} for all x) and a non-empty intersection of two intervals is
also an interval. Moreover, the endpoints of an interval need not be unique. For example,
if X has a smallest element a0 and a largest b0, then X = [a0, b0] = (−∞, b0] = [a0,∞).
An I-set I is defined by the property that, if x, y ∈ I and x < z < y with z ∈ X, then z ∈ I.
Every interval is an I-set but the converse fails as the examples of ∅ and X = (−∞,∞)
show. Even for the non-empty, bounded case, without order-completeness, an I-set need
not have endpoints. For example, in Q with the order inherited from the reals, the set
Q∩(−π, π) is a bounded I-set but has no endpoints in Q.

The following terminology may differ from standard usage in that the collections of
sets need not cover X.

Definition R21.1 Let A and B be collections of subsets of X. A refines B provided
every A ∈ A is a subset of some B ∈ B and ∪{A : A ∈ A} = ∪{B : B ∈ B}.

Definition R21.2 Let A be a collection of subsets of X. R(A) is defined to be
∪{A ×A : A ∈ A}.

Lemma R21.3 Let A be a pairwise disjoint collection of subsets of X.
Then R(A) ◦ R(A) = R(A).

Proof: This is an easy consequence of the definitions.
Lemma R21.4 Let (X,<) be a set with a linear order. Let I be a finite set of

intervals. Then there is I1 ⊆ I such that ∪I1 = ∪I, no element of I1 contains any other
element of I1, and R(I1) ⊆ R(I).

Proof: Let I1 be the set of I ∈ I not contained in any other element of I. Clearly
I1 ⊆ I, no element of I1 contains any other element of I1, and by definition R(I1) ⊆ R(I).
Let x ∈ I for some I in I. Either I ∈ I1 or there is a finite increasing chain of supersets
of I in I, the largest of which must be in I1. Thus x ∈ ∪I1.

Lemma R21.5 Let (X,<) be a set with a linear order. Let I be a finite set of
intervals with no element of I containing any other. If X has a smallest element a0, at
most one member of I contains a0. Similarly, if X has a largest element b0, at most one
member of I contains b0. Finally, I contains at most one left ray and at most one right
ray.
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Proof: Suppose X contains a smallest element a0, which is in both of I, J from I,
with I 6= J . Whether I, J are rays or have right endpoints, it easily follows that either
I ⊆ J or J ⊆ I, contradicting the assumption about I. The assertions about a largest
element and rays follow in much the same way.

The proofs of the next few lemmas involve a tedious multiplicity of cases, but I have
been unable to find more elegant arguments.

Lemma R21.6 Let (X,<) be a set with a linear order. Let I1 and I2 be open intervals
in X, with neither of them rays. Assume a ≤ b are the endpoints of I1 and c ≤ d are the
endpoints of I2. Assume neither is a subset of the other. Then there is a finite collection
of open intervals J such that J refines {I1, I2} and R(J ) ◦ R(J ) ⊆ R({I1, I2}).

Proof: By relabeling the intervals if necessary, assume a ≤ c. If I1 ∩ I2 = ∅, then
J = {I1, I2} has the required properties and so also assume that I1 ∩ I2 6= ∅. For any
x ∈ I1 ∩ I2, a ≤ x ≤ b and c ≤ x ≤ d so that c ≤ b. As case A, assume I1 ∩ I2 = {x} so
that {x} and [x,∞) are both open. Subcase Ai: If a < c and b < d, let J1 = I1 ∩ (−∞, x),
J2 = I2 ∩ (x,∞), and J3 = {x}. Let J be the non-empty elements of {J1, J2, J3}.
J consists of open intervals, each of which is contained in either I1 or I2. By R21.3
R(J ) ◦ R(J ) = R(J ) ⊆ R({I1, I2}). To see that J refines {I1, I2}, let t ∈ I1 ∪ I2. If
t < x, then t /∈ I2, for otherwise a < c ≤ t < x ≤ b would imply t is a second point
in I1 ∩ I2, a contradiction. Thus t ∈ I1, which implies t ∈ J1. Similarly, t > x implies
t ∈ J2. If t = x, clearly t ∈ J3. Thus I1 ∪ I2 ⊆ ∪J , as needed. Subcase Aii: Assume
a < c and d ≤ b. Since I2 6⊆ I1, it must be that b = d and d ∈ I2 − I1. In this subcase,
{d} = (x,∞) ∩ I2, i.e., {d} is open. Then J = {I1, {d}} has the required properties.
Subcase Aiii: Assume a = c and b < d. This is similar to the preceding subcase: {a} is
open and J = {I2, {a}} works. Subcase Aiv: Assume a = c and b > d. This is again
similar: {c} is open and J = {I1, {c}} works. Subcase Av: Assume a = c and b = d.
In this subcase, (a, b) ⊆ I1 ⊆ [a, b] and similarly for I2. Since neither is a subset of the
other, one must be [a, b) and the other (a, b]. Here J = {[a, x), [x, b]} works. As case B,
suppose |I1 ∩ I2| ≥ 2, and let x, y be in I1 ∩ I2 with x < y. Subcase Bi: Assume (x, y) = ∅
and a < c or b < d. The former says both (−∞, x] = (−∞, y) and [y,∞) = (x,∞) are
open. The latter implies b ≤ d since, if b > d, a < c would yield I2 ⊆ I1, a contradiction.
Let J1 = I1 ∩ (−∞, x] and J2 = I2 ∩ [y,∞), which are disjoint open intervals so that
R({J1, J2}) ◦ R({J1, J2}) = R({J1, J2}). Let t ∈ I1. If t ≤ x, then t ∈ J1. If t > x,
since (x, y) = ∅, t ≥ y. Since a ≤ c ≤ x < t ≤ b ≤ d, if b < d, then t ∈ J2. If b = d,
a < c and since I2 6⊆ I1, d ∈ I2 − I1 so that again t ∈ J2. Thus I1 ⊆ J1 ∪ J2. Similarly,
I2 ⊆ J1 ∪ J2 so that {J1, J2} refines {I1, I2}. Subcase Bii: Assume (x, y) = ∅ and a = c
and b ≥ d. If b = d, (a, b) ⊆ I1 ∩ I2 ⊆ [a, b] Since neither is a subset of the other, one
must be [a, b) and the other (a, b]. Then J = {[a, b) ∩ (−∞, x], (a, b] ∩ [y,∞)} works. If
b > d, since I2 6⊆ I1, c ∈ I2 − I1. Then J = {I2 ∩ (−∞, x], I1 ∩ [y,∞)} has the required
properties. Subcase Biii: Assume x < z < y for some z ∈ X and a < c or b < d. Let
J1 = I1 ∩ (−∞, z), J2 = (x, y), and J3 = I2 ∩ (z,∞). Let t ∈ I1. If t < z, then t ∈ J1.
If z ≤ t < y, then t ∈ J2. If t ≥ y and b < d, then t ∈ J3. If b ≥ d, since a < c and
I2 6⊆ I1, b = d and d ∈ I2 − I1 so that again t ∈ J3. After a similar argument for t ∈ I2,
we have I1 ∪ I2 ⊆ J1 ∪ J2 ∪ J3 and so J = {J1, J2, J3} refines {I1, I2}. Next let (p, q) and
(q, r) be in R(J ). If both pairs are in the same Jk × Jk, clearly (p, r) ∈ R({I1, I2}). Thus
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assume (p, q) ∈ Jk × Jk and (q, r) ∈ Jm × Jm with k 6= m. Since J1 ∩ J3 = ∅, one of k,m
must be 2. Since J2 ⊆ I1 ∩ I2, J1 ⊆ I1, and J3 ⊆ I2, it follows easily that (p, r) must be in
R({I1, I2}). Thus R(J ) ◦ R(J ) ⊆ R({I1, I2}). Subcase Biv: Assume x < z < y for some
z ∈ X and a = c and b ≥ d. If b = d, as in subcase Bii, one of I1, I2 must be [a, b) and
the other (a, b]. Let J1 = [a, b) ∩ (−∞, z), J2 = (x, y), and J3 = (a, b] ∩ (z,∞). Each of
J1, J2, J3 is an open interval and clearly J = {J1, J2, J3} refines {I1, I2}. As in subcase
Biii, R(J ) ◦ R(J ) ⊆ R({I1, I2}) as required. If b > d, since I2 6⊆ I1, a = c ∈ I2 − I1. Let
J1 = I2 ∩ (−∞, z), J2 = (x, y), and J3 = I1 ∩ (z,∞). Each of J1, J2, J3 is an open interval
and for J = {J1, J2, J3}, as in subcase Biii, R(J ) ◦ R(J ) ⊆ R({I1, I2}). Let t ∈ I1. If
t > z, then t ∈ J3. If x < t ≤ z, then t ∈ J2. If t ≤ x, c = a ≤ t ≤ x < z < d and, since
c ∈ I2, t ∈ I2 and so in J1. Similarly, I2 ⊆ J1 ∪ J2 ∪ J3 and so J refines {I1, I2}.

Lemma R21.7 Let (X,<) be a set with a linear order. Let I1 and I2 be open intervals
in X. Assume I1 is a left ray with endpoint b and I2 is a non-ray with endpoints c and d.
Assume neither is a subset of the other. Then there is a finite collection of open intervals
J such that R(J ) ◦ R(J ) ⊆ R({I1, I2}) and J refines {I1, I2}.

Proof: If I1∩I2 = ∅, then J = {I1, I2} has the required properties and so also assume
that I1∩I2 6= ∅. Note that, if x ∈ I1∩I2, then c ≤ x ≤ b. Since I2 6⊆ I1, c ≤ b ≤ d. As a final
preliminary observation, if b = d, since (−∞, b) ⊆ I1 ⊆ (−∞, b] and (c, b) ⊆ I2 ⊆ [c, b] and
I2 6⊆ I1, I1 = (−∞, b) and b ∈ I2. As a first case, suppose I1∩ I2 = {x}. Since {x} is open,
(−∞, x] is also open. Let J1 = I1∩(−∞, x] and J2 = I2∩(x,∞). These open intervals are
disjoint so that R({J1, J2}) ◦ R({J1, J2}) = R({J1, J2}). To see that J = {J1, J2} refines
{I1, I2}, let t ∈ I1 ∪ I2. If t ≤ x ≤ b, then t ∈ I1 and so in J1. If t > x, then t ∈ I2 would
imply t ∈ J2. Suppose t /∈ I2 so that t ∈ I1. If b < d, then c ≤ x < t ≤ b < d, contradicting
t /∈ I2. If b = d, as noted above I1 = (−∞, b) so that t < b. Then c ≤ x < t < b = d,
again contradicting t /∈ I2. As a second case assume |I1 ∩ I2| ≥ 2 and let x, y ∈ I1 ∩ I2

with x < y. If (x, y) = ∅, then both (−∞, x] = (−∞, y) and [y,∞) = (x,∞) are open.
Let J1 = I1 ∩ (−∞, x] and J2 = I2 ∩ [y,∞). These open intervals are disjoint so that
R({J1, J2}) ◦ R({J1, J2}) = R({J1, J2}). To see that J = {J1, J2} refines {I1, I2}, let
t ∈ I1 ∪ I2. If t ≤ x < y ≤ b, then t ∈ I1 and so in J1. If t ≥ y, then t ∈ I2 would imply
t ∈ J2. Suppose t /∈ I2 so that t ∈ I1. If b < d, then c ≤ x < y ≤ t ≤ b < d, contradicting
t /∈ I2. If b = d, since I1 = (−∞, b), c < y ≤ t < b = d, again contradicting t /∈ I2.
Finally, if (x, y) 6= ∅, pick z ∈ X with x < z < y. Let J1 = I1 ∩ (−∞, z), J2 = (x, y), and
J3 = I2 ∩ (z,∞), all open intervals. Note that J2 ⊆ I1 ∩ I2. To see that J = {J1, J2, J3}
refines {I1, I2}, let t ∈ I1∪I2. If t ≤ x < z < b, then t ∈ I1 and so in J1. If x < t < y, then
t ∈ J2. If t ≥ y, t ∈ I2 would imply t ∈ J3. Suppose t /∈ I2 so that t ∈ I1. If b < d, then
c < y ≤ t ≤ b < d, contradicting t /∈ I2. If b = d, since I1 = (−∞, b), c < y ≤ t < b = d,
again contradicting t /∈ I2. To verify the composition requirement, let (p, q) and (q, r) be
in R(J ). If both pairs are in the same Jk × Jk, clearly (p, r) ∈ R({I1, I2}). Thus assume
(p, q) ∈ Jk × Jk and (q, r) ∈ Jm × Jm with k 6= m. Since J1 ∩ J3 = ∅, one of k,m must
be 2. Since J2 ⊆ I1 ∩ I2, J1 ⊆ I1, and J3 ⊆ I2, it follows easily that (p, r) must be in
R({I1, I2}). Thus R(J ) ◦ R(J ) ⊆ R({I1, I2}) and J has the required properties.

Lemma R21.8 Let (X,<) be a set with a linear order. Let I1 and I2 be open intervals
in X. Assume I1 is a non-ray with endpoints a and b and I2 is a right ray with endpoint c.
Assume neither is a subset of the other. Then there is a finite collection of open intervals
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J such that R(J ) ◦ R(J ) ⊆ R({I1, I2}) and J refines {I1, I2}.

Proof: If I1∩I2 = ∅, then J = {I1, I2} has the required properties and so also assume
that I1 ∩ I2 6= ∅. For x ∈ I1 ∩ I2, a ≤ x ≤ b and c ≤ x. Thus c ≤ b. If c < a, then
I1 ⊆ I2, contradicting I1 6⊆ I2. Thus a ≤ c ≤ b. As a final preliminary observation,
if a = c, since (a, b) ⊆ I1 ⊆ [a, b] and (c,∞) ⊆ I2 ⊆ [c,∞) and I1 6⊆ I2, I2 = (c,∞)
and a ∈ I1. As a first case, suppose I1 ∩ I2 = {x}. Since {x} is open, [x,∞) is also
open. Let J1 = I1 ∩ (−∞, x) and J2 = I2 ∩ [x,∞). These open intervals are disjoint so
that R({J1, J2}) ◦ R({J1, J2}) = R({J1, J2}). To see that J = {J1, J2} refines {I1, I2},
let t ∈ I1 ∪ I2. If t ≥ x ≥ c, then t ∈ I2 and so in J2. If t < x, then t ∈ I1 would
imply t ∈ J1. Assume t /∈ I1 so that t ∈ I2. If a < c, then a < c ≤ t < x ≤ b,
contradicting t /∈ I1. If a = c, as noted above I2 = (c,∞) and so a = c < t < x ≤ b,
again contradicting t /∈ I1. As a second case assume |I1 ∩ I2| ≥ 2 and let x, y ∈ I1 ∩ I2

with x < y. If (x, y) = ∅, then both (−∞, x] = (−∞, y) and [y,∞) = (x,∞) are open.
Let J1 = I1 ∩ (−∞, x] and J2 = I2 ∩ [y,∞). These open intervals are disjoint so that
R({J1, J2}) ◦ R({J1, J2}) = R({J1, J2}). To see that J = {J1, J2} refines {I1, I2}, let
t ∈ I1 ∪ I2. If t ≥ y > x ≥ c, then t ∈ I2 and so in J2. If t ≤ x, then t ∈ I1 would imply
t ∈ J1. Suppose t /∈ I1 so that t ∈ I2. If a < c then a < c ≤ t ≤ x < y ≤ b, contradicting
t /∈ I1. If a = c, since I2 = (c,∞), a = c < t ≤ x < y ≤ b, again contradicting t /∈ I1.
Finally, if (x, y) 6= ∅, pick z ∈ X with x < z < y. Let J1 = I1 ∩ (−∞, z), J2 = (x, y), and
J3 = I2 ∩ (z,∞), all open intervals. Note that J2 ⊆ I1 ∩ I2. To see that J = {J1, J2, J3}
refines {I1, I2}, let t ∈ I1 ∪ I2. If t ≥ y > z > x ≥ c, then t ∈ I2 and so in J3. If x < t < y,
then t ∈ J2. If t ≤ x, then t ∈ I1 would imply t ∈ J1. Suppose t /∈ I1 so that t ∈ I2. If
a < c, c ≤ t < y ≤ b contradicts t /∈ I1. If a = c, I2 = (c,∞) and so a = c < t < x < y ≤ b,
again contradicting t /∈ I1. To verify the composition requirement, let (p, q) and (q, r) be
in R(J ). If both pairs are in the same Jk × Jk, clearly (p, r) ∈ R({I1, I2}). Thus assume
(p, q) ∈ Jk × Jk and (q, r) ∈ Jm × Jm with k 6= m. Since J1 ∩ J3 = ∅, one of k,m must
be 2. Since J2 ⊆ I1 ∩ I2, J1 ⊆ I1, and J3 ⊆ I2, it follows easily that (p, r) must be in
R({I1, I2}). Thus R(J ) ◦ R(J ) ⊆ R({I1, I2}) and J has the required properties.

Lemma R21.9 Let (X,<) be a set with a linear order. Let I1 and I2 be open intervals
in X. Assume I1 is a left ray with endpoint b and I2 is a right ray with endpoint c. Assume
neither is a subset of the other. Then there is a finite collection of open intervals J such
that R(J ) ◦ R(J ) ⊆ R({I1, I2}) and J refines {I1, I2}.

Proof: If I1∩I2 = ∅, then J = {I1, I2} has the required properties and so also assume
that I1 ∩ I2 6= ∅ and consequently that c ≤ b. As a first case, suppose I1 ∩ I2 = {x}.
Since {x} is open, (−∞, x] is also open. Let J1 = I1 ∩ (−∞, x] and J2 = I2 ∩ (x,∞).
These open intervals are disjoint so that R({J1, J2}) ◦ R({J1, J2}) = R({J1, J2}). To see
that J = {J1, J2} refines {I1, I2}, let t ∈ I1 ∪ I2. If t ≤ x ≤ b, then t ∈ I1 and so in J1.
If t > x ≥ c, then t ∈ I2 and so in J2. As a second case assume |I1 ∩ I2| ≥ 2 and let
x, y ∈ I1 ∩ I2 with x < y. If (x, y) = ∅, then both (−∞, x] = (−∞, y) and [y,∞) = (x,∞)
are open. Let J1 = I1 ∩ (−∞, x] and J2 = I2 ∩ [y,∞). These open intervals are disjoint
so that R({J1, J2}) ◦ R({J1, J2}) = R({J1, J2}). To see that J = {J1, J2} refines {I1, I2},
let t ∈ I1 ∪ I2. If t ≤ x ≤ b, then t ∈ I1 and so in J1. If t ≥ y ≥ c, then t ∈ I2 and so
in J2. If (x, y) 6= ∅, pick z ∈ X with x < z < y. Let J1 = I1 ∩ (−∞, z), J2 = (x, y), and
J3 = I2 ∩ (z,∞), all open intervals. Note that J2 ⊆ I1 ∩ I2. To see that J = {J1, J2, J3}
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refines {I1, I2}, let t ∈ I1 ∪ I2. If t ≤ x < z < b, then t ∈ I1 and so in J1. If x < t < y,
then t ∈ J2. If t ≥ y, since y > c, t ∈ I2 and so in J3. Next let (p, q) and (q, r) be in
R(J ). If both pairs are in the same Jk × Jk, clearly (p, r) ∈ R({I1, I2}). Thus assume
(p, q) ∈ Jk × Jk and (q, r) ∈ Jm × Jm with k 6= m. Since J1 ∩ J3 = ∅, one of k,m must
be 2. Since J2 ⊆ I1 ∩ I2, J1 ⊆ I1, and J3 ⊆ I2, it follows easily that (p, r) must be in
R({I1, I2}). Thus R(J ) ◦ R(J ) ⊆ R({I1, I2}) and J has the required properties.

Lemma R21.10 Let (X,<) be a set with a linear order. Let I1 and I2 be open
intervals in X. Then there is a finite collection of open intervals J such that J refines
{I1, I2} and R(J ) ◦ R(J ) ⊆ R({I1, I2}).

Proof: If either is a subset of the other, this is trivial. The non-trivial cases are covered
in R21.6 through R21.9.

Lemma R21.11 Let I1 and I2 be intervals in X with I1 6⊆ I2 and I2 6⊆ I1. If a is a
left endpoint of both I1 and I2, then a is in one but not the other. If b is a right endpoint
of both I1 and I2, then b is in one but not the other.

Proof: Assume a is a left endpoint of both I1 and I2. First suppose neither contains
a. Clearly neither can be a right ray and so let c, d be right endpoints of I1, I2 respectively.
Then (a, c) ⊆ I1 ⊆ (a, c] and (a, d) ⊆ I2 ⊆ (a, d]. If c < d, then I1 ⊆ I2, a contradiction.
If c > d, then I2 ⊆ I1, a contradiction. If c = d and both contain c = d or both do not
contain c = d, then I1 = I2, a contradiction. If c = d is in one but not the other, I1 ⊆ I2

or I2 ⊆ I1, contradiction. Thus it cannot be that neither contains a. In much the same
way, the case of both containing a cannot hold. The argument for the claim about right
endpoints is similar.

Corollary R21.12 Let I be a set of intervals of X such that I, J ∈ I implies I 6⊆ J
and J 6⊆ I. Then at most two members of I have a common left endpoint. Likewise, at
most two members of I have a common right endpoint.

Proof: Immediate fron R21.11.

Lemma R21.13 Let I be a finite set of open intervals in X. Then there is a finite
collection of open intervals J such that R(J ) ◦ R(J ) ⊆ R(I) and J refines I.

Proof: By R21.4, we can assume no element of I contains any other element of I,
which implies by R21.5 that I contains at most one left ray and at most one right ray. Now
proceed by induction on |I|: When |I| = 1 the statement is trivial and the case |I| = 2 is
R21.10. Assume the statement is true for any collection of cardinality n, where n ≥ 2. Let
I = {I1, I2, . . . , In, In+1} be a set of n + 1 open intervals. If Ik ∩∪{Ij : j 6= k} = ∅ for any
k, apply the induction hypothesis to obtain J1 which satisfies the conclusion for I − {Ik}
and let J = J1∪{Ik}. In this case R(J )◦R(J ) = R(J1)◦R(J1)∪Ik ×Ik is easily verified
so the conclusion holds. Thus make another assumption: Ik ∩ ∪{Ij : j 6= k} 6= ∅ for all k.
Since n+1 > 2, {a : a is a left endpoint of some Ij} is non-empty and finite. Let a0 be the
largest left endpoint. Re-subscript so that In+1 has a0 as a left endpoint and, if I contains
two intervals with left endpoint a0, so that In+1 is the one (by R21.11) not containing a0.
Note that, if there is a right ray in I, it must be In+1. Otherwise, for right ray Ik with left
endpoint a, since a ≤ a0 and a0 /∈ In+1, In+1 ⊆ Ik, a contradiction. Next there are at least
two intervals in I other than In+1, at least one of which has right endpoint. Let b0 be the
largest right endpoint of the remaining intervals. If necessary, again relabel the remaining
intervals so that In has right endpoint b0 and, if there are two such, so that In is the one
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containing b0. Note that a0 ≤ b0 since otherwise (∪n
k=1Ik) ∩ In+1 = ∅. By the induction

hypothesis there is a finite family of open intervals, A, such that A refines {I1, I2, . . . , In}
and R(A)◦R(A) ⊆ R({I1, I2, . . . , In}). By R21.10 there is a finite set of open intervals, B,
such that B refines {In, In+1} and R(B) ◦ R(B) ⊆ R({In, In+1}). As a first case, assume
a0 = b0. Since In∩In+1 6= ∅, In∩In+1 = {b0}, which is open so that (−∞, b0] is also open.
Let J be the set of non-empty elements from {A∩(−∞, b0 ] : A ∈ A}∪{B∩(b0 ,∞) : B ∈ B}.
Clearly each element of the finite set J is an open interval contained in some Ij . Since
(−∞, b0] and (b0,∞) are disjoint, R(J ) ◦ R(J ) ⊆ R(A) ◦ R(A) ∪ R(B) ◦ R(B) so that
R(J ) ◦ R(J ) ⊆ R(I). To see that J refines I, let t ∈ ∪n+1

j=1 Ij . If t > b0 = a0, t must
be in In+1 and so in B ∩ (b0,∞) for some B ∈ B. If t ≤ b0, then t ∈ ∪n

j=1Ij and so in
A ∩ (−∞, b0] for some A ∈ A. As a second case, assume a0 < b0 and (a0, b0) = ∅. Then
[b0,∞) = (a0,∞) and (−∞, a0] = (−∞, b0) are open. Let J be the set of non-empty
elements from the collection

{A ∩ (−∞, a0] : A ∈ A} ∪ {B ∩ [b0,∞) : B ∈ B} ∪ {In+1 ∩ (−∞, a0]}.

Clearly each element of the finite set J is an open interval contained in some Ij . Since
(−∞, a0] and [b0,∞) are disjoint and In+1 ∩ (−∞, a0] is either ∅ or {a0}, R(J ) ◦ R(J ) is
contained in R(A)◦R(A)∪R(B)◦R(B) so that R(J )◦R(J ) ⊆ R(I). To see that J refines I,
let t ∈ ∪n+1

j=1 Ij. If t < a0, then t ∈ ∪n
j=1Ij and so there is A ∈ A such that t ∈ A∩(−∞, a0].

If t = a0 and In+1 ∩ (−∞, a0] = ∅, again t ∈ ∪n
j=1Ij and t ∈ A∩ (−∞, a0] for some A ∈ A.

If t = a0 and In+1 ∩ (−∞, a0] = {a0}, then t ∈ In+1 ∩ (−∞, a0]. If t ≥ b0, then t must be
in In ∪ In+1 and there is B ∈ B such that t ∈ B ∩ [b0,∞). As a final case, assume a0 < b0

and (a0, b0) 6= ∅. Since In is either a left ray or has a left endpoint less than or equal a0 by
the choice of a0, (a0, b0) ⊆ In. Since In+1 6⊆ In and a0 /∈ In+1 if a0 is also the left endpoint
of In, (a0, b0) ⊆ In+1 as well. Pick z with a0 < z < b0 and let J be the set of non-empty
elements of {A ∩ (−∞, z) : A ∈ A} ∪ {B ∩ (z,∞)} ∪ {A ∩ B ∩ (a0, b0) : A ∈ A, B ∈ B}.
Clearly each element of the finite set J is an open interval contained in some Ij . Since
(−∞, z) and (z,∞) are disjoint, R(J ) ◦ R(J ) ⊆ R(A) ◦ R(A) ∪ R(B) ◦ R(B) so that
R(J ) ◦ R(J ) ⊆ R(I). To see that J refines I, let t ∈ ∪n+1

j=1 Ij . If t < a0, t /∈ In+1 and
so t must be in ∪n

j=1Ij and there is A ∈ A with t ∈ A ∩ (−∞, z). If t > b0, t /∈ ∪n
j=1Ij

and so t must be in In+1 and there is B ∈ B with t ∈ B ∩ (z,∞). If a0 < t < b0, since
(a0, b0) ⊆ In ∩ In+1, t ∈ A ∩ B ∩ (a0, b0) for some A ∈ A, B ∈ B. If t = a0 and a0 ∈ In+1,
by labeling In+1 is the only interval in I with left endpoint a0. By the choice of a0, In

is either a left ray or has left endpoint smaller than a0 so that t = a0 ∈ In and there is
A ∈ A with t ∈ A ∩ (−∞, z). If t = a0 and a0 /∈ In+1, then t must be in ∪n

j=1Ij and there
is A ∈ A with t ∈ A∩ (−∞, z). If t = b0 and b0 /∈ In, by labeling In is the only interval in
{I1, . . . , In} with right endpoint b0. Since In+1 is the only possible right ray in I, it must
be that t = b0 /∈ ∪n

j=1Ij , i.e., t must be in In+1 and there is B ∈ B with t ∈ B ∩ (z,∞). If
t = b0 and b0 ∈ In, then there is B ∈ B with t ∈ B ∩ (z,∞).

The following definition and proposition are almost definitely known. Banaschewski
[1] may present them in some form or may indicate a source.

Definition R21.14 Let (X,<) be a set with a linear order. U(<) is defined to be
the union of {X × X} and the set of U ∈ P(X × X) such that U is a superset of some
R(I), where I is a finite collection of open intervals covering X.
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Proposition R21.15 Let (X,<) be a set with a linear order. Then

i) U(<) is a uniformity for X.
ii) τ (U(<)) = τ (<).
iii) U(<) is separated and totally bounded.

Proof: For i): If I is a cover of X, clearly the diagonal of X is contained in R(I) and
R(I) is symmetric. Thus diagonal and symmetry requirements (P2.1i and P2.1iv) in the
definition of a uniformity hold for U(<). Obviously the superset requirement P2.1ii also
holds. If I1 and I2 are two finite collections of open intervals covering X, let I be the
set of non-empty elements from {I ∩ J : I ∈ I1, J ∈ I2}. I is a finite collection of open
intervals covering X, and it is straightforward to check that R(I) ⊆ R(I1) ∩ R(I2). The
intersection requirement P2.1iii follows easily. Finally, the triangle inequality requirement
P2.1v is immediate from R21.13. For ii): First note that if I is a finite collection of open
intervals covering X, then, for any x ∈ X, R(I)[x] = ∪{I ∈ I : x ∈ I}, which is open
in τ (<). It follows easily that τ (U(<)) ⊆ τ (<). Next let x ∈ G ∈ τ (<). There an open
interval I ∈ τ (<) such that x ∈ I ⊆ G. Let I = {I, (−∞, x), (x,∞)}, which is a finite set
of open intervals covering X. Then R(I) ∈ U(<) and R(I)[x] = I ⊆ G. Thus G ∈ τ (U(<))
and so τ (<) ⊆ τ (U(<)). For iii): Since τ (<), i.e., τ (U(<)), is T2, U(<) must be separated.
If I is a finite collection of open intervals covering X, pick xI ∈ I for each I ∈ I and let
F = {xI : I ∈ I}. F is finite and clearly R(I)[F ] = ∪{I : I ∈ I} = X. It follows easily
that U(<) is totally bounded.

Corollary R21.16 Let (X,<) be a set with a linear order. U(<) is complete if and
only if (X, τ (<)) is compact.

Proof: This is immediate from R21.15 and P2.7.

The last proposition and P2.3 show that τ (<) must be T3 1

2

. A better result shows

that τ (<) is actually completely normal.

Proposition R21.17 Let (X,<) be a set with a linear order. Then (X, τ (<)) is T5.

Proof: See Steen and Seebach [3; pp. 66-67].

Definition R21.18 Let (X,<) be a set with a linear order. UM (<) is defined to be
{U ⊆ X × X : R(C) ⊆ U , where C is a finite τ (<)-open cover of X}.

Corollary R21.19 Let (X,<) be a set with a linear order. Then UM (<) is a totally
bounded uniformity generating τ (<). Moreover, the T2 compactification associated with
UM (<) is the Stone-Čech compactification of (X, τ (<)).

Proof: This is immediate from R6.3.4 and R1.8.

Clearly U(<) ⊆ UM (<). A question of interest is whether they are equal. Certainly
equality holds if (X, τ (<)) is compact, but the following example shows that U(<) may be
a proper subset.

Example R21.20 The reals with the usual order will be used. Let O1 = (−∞, 1),
O2 = ∪{(n − 1, n + 1) : n is an even positive integer}, and O3 = ∪{(n − 1, n + 1) : n is an
odd positive integer}. It is easily checked that {O1, O2, O3} is an open cover of lR so that
R({O1, O2, O3}) is in UM (<). Note that O2 contains no odd integers and O3 contains no
evens. Let I be a finite set of open intervals covering lR . Clearly I must contain at least
one right ray, say (a,∞). Pick a positive integer n such that n > a. The ordered pair
(n, n + 1) is in (a,∞) × (a,∞) and so in R(I). Clearly that pair is not in O1 ×O1. Since
one of n, n +1 is even and the other odd, that pair is not in O2 ×O2 ∪O3 ×O3 and so not

7



in R({O1, O2, O3}). Thus R(I) 6⊆ R({O1, O2, O3}) and so R({O1, O2, O3}) is not in U(<).
The next definition is familiar, although the terminology may be non-standard.
Definition R21.22 Let (X,<) be a set with a linear order. X is order-complete

provided every non-empty subset of X which is bounded above in X has a least upper
bound in X.

Note the importance of the phrase ‘in X.’ By this terminology, for X = [0, 1) with the
usual ordering, X is order-complete. X itself has no upper bounds in X, even though it
has upper bounds in lR .

A standard argument shows that, if (X,<) is order-complete, then every non-empty
subset of X which is bounded below in X has a greatest lower bound in X. The next two
theorems are also familiar, with proofs found in many expositions, including Steen and
Sternbach [3; pp. 67-68].

Theorem R21.23 Let (X,<) be a set with a linear order, where X 6= ∅. Then
(X, τ (<)) is compact if and only if X has a largest element, X has a smallest element, and
X is order-complete.

Corollary R21.24 Let (X,<) be a set with a linear order. If U(<) is complete, then
X is order-complete.

Proof: This is immediate from R21.16 and R21.23.
The converse of R21.24 is false, as the example of lR with the usual order shows.
Theorem R21.25 Let (X,<) be a set with a linear order. Then (X, τ (<)) is con-

nected if and only if X has no consecutive points and X is order-complete.
Definition R21.26 Let (X,<) be a set with a linear order and let A ⊆ X. <A is

the linear order on A inherited from (X,<), i.e., for a1, a2 ∈ A, a1 <A a2 if and only if
a1 < a2.

To avoid nuisance cases, |A| ≥ 2 will often be assumed. <A may also be referred
to as the restriction of < to A. Some additional notation and terminology will also be
used. For A ⊆ X, intervals and rays in (A,<A) will be called A-intervals and A-rays and
denoted with a subscript. For example, given a, b ∈ A, [a, b)A = {t ∈ A : a ≤A t <A b}.
This somewhat cumbersome notation can also be used for intervals and rays of X but will
normally be avoided except for emphasis or clarity.

Proposition R21.27 Let (X,<) be a set with a linear order and assume X is order
complete. Let A ⊆ X with |A| ≥ 2. If A is an I-set in X, then (A,<A) is also order-
complete.

Proof: Let B ⊆ A be non-empty with an upper bound in A. By the order-completeness
of X there is b0 ∈ X, the least upper bound. Let b ∈ B and let a ∈ A be an upper bound
of B. Then b ≤ b0 ≤ a so that, since A is an I-set in X, b0 ∈ A, i.e., B has a least upper
bound in A as required.

The following example illustrates a complication with subspaces. In A = [0, 1) ∪ {2}
as a subset of lR with the usual ordering, {2} is open in the subspace topology but not
τ (<A)-open, which also holds if the superset is taken to be X = [0, 1] ∪ {2} with the
induced order from lR . This example from Munkres [2; p.90] demonstrates the second
part of the following and shows that density alone does not guarantee that τ (<A) is the
subspace topology.
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Proposition R21.28 Let (X,<) be a set with a linear order and let A ⊆ X with
|A| ≥ 2. Let τA be the subspace topology on A from (X, τ (<)). Then

i) τ (<A) ⊆ τA.
ii) τ (<A) may be a proper subset of τA.
iii) If A is an I-set in X, then τ (<A) = τA.

Proof: For a ∈ A, it is easy to check that (−∞, a)A = (−∞, a) ∩ A and (a,∞)A =
(a,∞) ∩ A from which i) follows. For iii), because of i), it is sufficient to show that the
subbasic sets, (x,∞) ∩ A and (−∞, x) ∩ A, are in τ (<A) for every x ∈ X. Let x ∈ X. If
x /∈ A, since A is an I-set in X, either A ⊆ (−∞, x) or A ⊆ (x,∞) so that (−∞, x) ∩ A is
either ∅ or A. If x ∈ A, then (−∞, x)A = (−∞, x) ∩ A. In either case (−∞, x) ∩ A is in
τ (<A) as needed. Similarly, (x,∞) ∩ A is in τ (<A).

Corollary R21.29 Let (X,<) be a set with a linear order and and assume (X, τ (<))
is connected. Then every I-set of X is connected.

Proof: Let A be an I-set of X. If |A| ≤ 1, the result is trivial. Otherwise, by R21.28iii
there is no ambiguity about the topology on A. By R21.25 X is order-complete and has
no consecutive points. Because A is an I-set of X, a pair of consecutive points of (A,<A)
would also be consecutive points in X, i.e., there is no such pair. By R21.26 it is also
order-complete. By R21.25 again A is connected.

Proposition R21.30 Let (X,<) be a set with a linear order and let A ⊆ X with
|A| ≥ 2 and A dense in X. Let τA be the subspace topology on A from (X, τ (<)). If A
contains all consecutive pairs of X, then τ (<A) = τA.

Proof: Let x ∈ X. If x ∈ A, (−∞, x) ∩ A = (−∞, x)A. If x /∈ A, by the hypothesis
for consecutive pairs, t < x implies (t, x) 6= ∅. This and the density of A easily yield
(−∞, x) ∩ A = ∪{(−∞, a)A : a ∈ A, a < x} so that (−∞, x) ∩ A ∈ τ (<A). Similarly,
(x,∞) ∩ A ∈ τ (<A). Since τ (<A) contains a subbasis for τA, τA ⊆ τ (<A) and by R21.28i
the conclusion follows.

In this context, A has two uniformities of interest, U(<A) and the subspace uniformity
from U(<), which will be denoted UA(<). The next few items focus on relations between
these two uniformities. The next lemma shows that UA(<) need not equal U(<A).

Lemma R21.31 Let (X,<) be a set with a linear order and let A ⊆ X. Let τA be
the subspace topology on A from (X, τ (<)). If τ (<A) 6= τA, then U(<A) 6= UA(<).

Proof: By R21.15ii τ (U(<)) = τ (<) so that τ (UA(<)) is the subspace topology from
τ (<), i.e., τA. Since by R21.15ii τ (U(<A)) = τ (<A) and the topologies on A are distinct,
the uniformities must be different.

Lemma R21.32 Let (X,<) be a set with a linear order and let A ⊆ X. Let a ∈ A.
If (−∞, a]A ∈ τ (<A), then either (−∞, a] ∈ τ (<) or there is x ∈ X such that a < x and
(a, x) ∩ A = ∅.

Proof: Assume (−∞, a]A ∈ τ (<A) and (−∞, a] /∈ τ (<). By R21.28i there is x ∈ X
such that a ∈ (−∞, x) ∩ A ⊆ (−∞, a]A. Clearly a < x and (a, x) ∩ A = ∅.

Lemma R21.33 Let (X,<) be a set with a linear order and let A ⊆ X. Let a ∈ A.
If [a,∞)A ∈ τ (<A), then either [a,∞) ∈ τ (<) or there is y ∈ X such that y < a and
(y, a) ∩ A = ∅.

Proof: Similar to R21.32.

Lemma R21.34 Let (X,<) be a set with a linear order and let A ⊆ X. Let I be
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a non-empty A-interval in τ (<A). Then there is an X-interval J(I) ∈ τ (<) such that
J(I) ∩ A = I. Moreover, if I is a left A-ray with endpoint a ∈ A, then (−∞, a) ⊆ J(I),
and similarly for right A-rays. Lastly, if I has endpoints a <A b, then (a, b) ⊆ J(I).

Proof: This proceeds by cases. If I = (a, b)A for some a, b ∈ A, let J(I) = (a, b). It is
easy to check that (a, b) ∩ A = (a, b)A, i.e., J(I) ∩ A = I as required. If I = (a,∞)A, let
J(I) = (a,∞) and, if I = (−∞, b)A, make the analogous choice. In either case J(I)∩A = I
follows as before. If I = [a, b)A, note that [a,∞)A = [a, b)A ∪ (a,∞)A is in τ (<A). Apply
R21.33. If [a,∞) is in τ (<), let J(I) = [a, b). It is easy to check that J(I) ∈ τ (<) and
J(I) ∩ A = I. Otherwise pick y ∈ X with y < a and (y, a) ∩ A = ∅ and let J(I) = (y, b),
which meets the requirements. The other endpoint-included cases can be handled similarly.
In all cases, the subset assertions are clear.

Note that despite the function-like notation in the previous lemma, J(I) need not be
unique.

Lemma R21.35 Let (X,<) be a set with a linear order and let A ⊆ X. Let I be
a finite collection of τ (<A)-open A-intervals, which cover A. Then there is J , a finite
collection of τ (<)-open X-intervals, which cover X, such that R(J ) ∩ A × A ⊆ R(I).

Proof: By R21.4 there is I1 ⊆ I such that ∪I1 covers A, no element of I1 contains
any other element of I1, and R(I1) ⊆ R(I). A J which satisfies the requirements of
the conclusion for I1 also works for the original I. Furthermore, if |I1| = 1, then J =
{(−∞,∞)} works. Thus assume |I1| ≥ 2. As a last simplifying assumption, assume
I1 = {I1, I2, . . . , In} is labeled using R21.5 and R21.11 as follows: I1 is the left ray, if there
is one, or else I1 is the element with the smallest left endpoint, say a1, and with a1 ∈ I1.
For j ≥ 2, assume aj is the left endpoint of Ij , a2 ≤ a3 ≤ · · · ≤ an, and if aj = aj+1, then
Ij is the one containing aj . Note that, if a1 exists, a1 ≤ a2.

Next note that if I1 contains a right ray, it must be In. For, if Ij is a right ray and
j < n, either aj = aj+1 so that aj ∈ Ij or aj < aj+1. In either case Ij+1 ⊆ Ij , contradicting
a simplifing assumption. Now let bj be the right endpoint of Ij for 1 ≤ j < n and, if In

is not a right ray, let bn be the right endpoint of In. As a final preliminary observation,
note that bj ≤ bj+1 whenever both are defined. For, if bj+1 < bj , either aj = aj+1 so that
aj ∈ Ij or aj < aj+1. In either case Ij+1 ⊆ Ij , again contradicting a simplifing assumption.

Now for 1 ≤ j ≤ n use R21.34 to pick J(Ij) and let J1 be the set of J(Ij) so chosen.
J1 is a finite set of τ (<)-open X-intervals such that R(J1)∩A×A ⊆ R(I1), but J1 may not
cover X. The objective is to enlarge J1 by adding a finite number of τ (<)-open intervals
each disjoint from A in such a way that the enlarged collection does cover X. First, if a1

is defined, it must be the smallest element of A and so add (−∞, a1) if it is non-empty.
Likewise, if bn is defined, it must be the largest element of A and so add (bn,∞) if it is
non-empty. If Ij ∩ Ij+1 = ∅, then bj ≤ aj+1 and note that (bj , aj+1) must be disjoint
from A as follows: Suppose x ∈ (bj , aj+1) ∩ A. Then x ∈ Ik for some k. If k ≤ j, then
x ≤ bk ≤ bj , which contradicts x > bj . If k ≥ j +1, then aj+1 ≤ ak ≤ x, which contradicts
x < aj+1. Add (bj , aj+1) if it is non-empty.

Finally, let J be J1 together with the additions described in the last paragraph.
Clearly, J is a finite collection of τ (<)-open X-intervals. Since each added interval is
disjoint from A, R(J ) ∩ A × A = R(J1) ∩ A ×A ⊆ R(I1). To verify that J covers X, let
x ∈ X. If x ∈ A, then x is in some Ik, which equals J(Ik)∩A. If x is not in A, note that it
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cannot be an endpoint of any Ik, since all such endpoints are in A. If x < b1, then x is in
either J(I1) or the left ray added if a1 is defined. If x > an, then x is in J(In) or the right
ray added because bn is defined. Thus assume b1 < x < an. Let j =min{k : bk < x} and
note j < n. If x < aj+1, then Ij∩Ij+1 = ∅ and x ∈ (bj , aj+1), which is one of the additions.
If x > aj+1, then j + 1 < n and bj < x < bj+1. By R21.34 (aj+1, bj+1) ⊆ J(Ij+1) so that
x ∈ J(Ij+1).

Proposition R21.36 Let (X,<) be a set with a linear order and let A ⊆ X. Then
U(<A) ⊆ UA(<).

Proof: By the definition of U(<) and U(<A) and of the subspace uniformity, this
conclusion easily follows from R21.35.

Lemma R21.37 Let (X,<) be a set with a linear order and let A be an interval in
X. For any other X-interval, I, I ∩ A is either ∅, A, or an A-interval.

Proof: Assume I ∩ A is not ∅. As a sample case, assume A has endpoints a ≤ b and
I has endpoints c ≤ d. Let x =max{a, c} and y =min{b, d}. I ∩ A is an X-interval with
endpoints x, y, which may or may not be included in I ∩ A depending on I and A. If
x, y are both in A, clearly I ∩ A is an A-interval. If x /∈ A and y ∈ A, the set I ∩ A can
be described as a left A-ray with endpoint y. If y /∈ A and x ∈ A, the set I ∩ A can be
described as a right A-ray with endpoint x. If neither of x, y is in A, I ∩A = A. The other
cases are similar.

Corollary R21.38 Let (X,<) be a set with a linear order and let A be an interval
in X. Then U(<A) = UA(<).

Proof: Given I, a τ (<)-open interval in X, by R21.37, I ∩ A is either ∅, A, or a
τ (<A)-open interval in A. It follows that a finite collection of τ (<)-open intervals which
covers X induces a finite collection of τ (<A)-open intervals, which cover A. With that, it
is routine to verify that UA(<) ⊆ U(<A). The conclusion is now immediate from R21.36.

Next the compactification determined by U(<) will be identified in the case that
(X, τ (<)) is connected and non-compact. Assuming connectedness, one has by R21.25,
R21.28iii, R21.27, and R21.23 that [a, b] is compact for any a ≤ b in X. It follows easily
that, if (X, τ (<)) is connected, it is also locally compact, which is necessary to apply R5.1.1
in the next three propositions.

Proposition R21.39 Let (X,<) be a set with a linear order. Assume (X, τ (<))
is connected, non-compact, and has neither a largest nor a smallest element. Then the
compactification determined by U(<) is a two-point compactification.

Proof: Let x0 ∈ X, let G1 = (−∞, x0), and let G2 = (x0,∞). G1 and G2 are disjoint,
τ (<)-open sets with X−(G1∪G2) = {x0} compact and Gi∪{x0} non-compact. Because of
local compactness R5.1.1 applies, and so this pair determines a two-point compactification,
which, as in the proof of R5.1.1, can be constructed as follows: Pick p1 6= p2 not in X and
let Y = X ∪ {p1, p2}. Let σ be the set of all O ⊆ Y such that O ∩ X is τ (<)-open and,
for i = 1, 2, pi ∈ O implies (X − O) ∩ Gi has compact closure in X. Y with the inclusion
map ι is a two-point compactification of X.

Now extend < to Y by declaring p1 the smallest element and p2 the largest element.
More precisely, define <∗ on Y by x <∗ y if and only if x = p1 6= y or x 6= p2 = y
or x, y ∈ X and x < y. It can be easily checked that <∗ is a linear order on Y and <∗

restricted to X is <. Denote <∗-rays with an ∗ superscript and observe that (−∞, p1)
∗ = ∅,
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for y ∈ X (−∞, y)∗ = {p1} ∪ (−∞, y), and (−∞, p2)
∗ = {p1} ∪X. When the ray contains

p1, [X−(−∞, y)∗]∩(−∞, x0)is contained in [y, x0] for y ∈ X and is ∅ for y = p2. It follows
from the definition of σ that (−∞, y)∗ ∈ σ and similarly (y,∞)∗ ∈ σ. Thus τ (<∗) ⊆ σ.
Since (Y, σ) is compact and T2, σ is minimal T2. Since τ (<∗) is also T2, τ (<∗) = σ. Since
τ (U(<∗)) = τ (<∗), U(<∗) is the unique uniformity for σ, and, as shown in R1.4, (Y, ι)
is the compactification determined by the subspace uniformity on X from U(<∗). Since
X = (p1, p2)

∗ and <∗ restricted to X is <, by R21.38 that subspace uniformity is U(<).

One can easily see that, under the hypothesis of R21.39, using the same argument as
R5.1.8, all two-point compactifications of (X, τ (<)) are equivalent and, using the argument
of R5.1.7, (X, τ (<)) has no n-point compactification for n ≥ 3.

Proposition R21.40 Let (X,<) be a set with a linear order. Assume (X, τ (<)) is
connected and has a largest but no smallest element. Then the compactification determined
by U(<) is the one-point compactification.

Proof: Similar to R21.39: Extend < by adding the point at infinity as the smallest
element.

Proposition R21.41 Let (X,<) be a set with a linear order. Assume (X, τ (<)) is
connected and has a smallest but no largest element. Then the compactification determined
by U(<) is the one-point compactification.

Proof: Similar to R21.39: Extend < by adding the point at infinity as the largest
element.

This section will be concluded with some results related to the remnant rings. The
first lemma is a general fact which will be used implicitly.

Lemma R21.42 Let (X, τ ) be a T3 1

2

space, let (Y, f) be a T2 compactification of

(X, τ ), and let U be the separated totally bounded uniformity for X corresponding to
(Y, f). Let A be a dense subset of X, let τA denote the subspace topology on A, and let
UA denote the subspace uniformity induced on A by U . Then

i) τA = τ (UA).
ii)(Y, f |A) is a T2 compactification of (A, τA).
iii) UA is the uniformity corresponding to (Y, f |A).

Proof: The first part is a standard fact, easy to verify. It is routine to check that f [A]
is dense in Y and that f |A is a uniform embedding, from which the second and third parts
follow.

Let k ∈ lN with k ≥ 2. The following facts and notation will be used in the rest of
this section. For n ∈ lN and z ∈ Z , Dz

n(k) is the Z -equivalence class of z mod kn. Let Bk

be the set of Dz
n(k) over all n, z. By R16.7 and R16.9 Bk is a clopen basis for a topology

on Z . In R16.15 it is shown that (Rk ,fk) is a T2 compactification of (Z ,τk), where τk is
the topology with basis Bk. As in R16.24 Vk denotes the uniformity for Z corresponding
to (Rk ,fk).

In lN the subspace topology from τk will be denoted by τ̃k, the subspace uniformity
from Vk by Ṽk, and the restriction of fk to lN by f̃k. By R12.6.9 fk[lN ] is dense in Rk and
so R21.42 applies: (Rk ,f̃k) is a T2 compactification of (lN ,τ̃k) with Ṽk the corresponding
uniformity.

Finally <k denotes the linear order generating the topology on Rk as in R19.1.7.
Recall that the consecutive pairs of <k were completely described in R19.1.15, R19.1.17,
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and R19.1.19. Those facts will be utilized in what follows.

Proposition R21.43 Let (X,<) be a set with a linear order with consecutive points
x0 < x1. Let A be dense in X and assume at least one of x0, x1 is not in A. Then U(<A)
is a proper subset of UA(<).

Proof: Since x0, x1 are consecutive, (x0, x1) = ∅, (−∞, x0] = (−∞, x1) is in τ (<),
and [x1,∞) = (x0 ,∞) is in τ (<). Thus I = {(−∞, x0], [x1,∞)} is a finite cover of X
by τ (<)-open intervals. Suppose x0 /∈ A and there is J , a finite set of τ (<A)-open A-
intervals, such that R(J ) ⊆ R(I) ∩ A × A. For any J ∈ J , since J × J ⊆ R(I) and there
are only two elements of I, either J ⊆ (−∞, x0] or J ⊆ [x1,∞). Since A is dense in X,
A ∩ (−∞, x0] 6= ∅ and so, since J covers A, there is at least one element of J contained
in (−∞, x0]. Each such element has a right endpoint and so, since J is finite, let b ∈ A be
the largest such right end point. Since x0 /∈ A, b < x0. Since (b, x0 ] is non-empty and in
τ (<), by density there is a ∈ A such that b < a ≤ x0. By the definition of b, a /∈ ∪J , a
contradiction. The argument is similar but uses a smallest left endpoint, if x0 ∈ A so that
x1 /∈ A.

The last proposition can be applied to the remnant rings, as follows.

Corollary R21.44 For any natural number k ≥ 2, the uniformity determined by <k

restricted to the subset fk[lN ] is a proper subset of the subspace uniformity.

Proof: Fix k ≥ 2. U(<k) must be the unique uniformity for the compact space
Rk . For any j ∈ lN with j ≥ 2, by R19.1.21 fk(j) is the larger of a consecutive pair with
the smaller being the image of a negative integer under fk. By R21.43 the conclusion is
immediate.

The last result transfers to lN . First, more notation: For m,n ∈ lN , m ≺k n if and
only if fk(m) <k fk(n).

Corollary R21.45 For any natural number k ≥ 2, U(≺k) is a proper subset of Ṽk.

Proof: The one-to-one map f̃k induces two weak uniformities on lN , U(≺k) from the
uniformity determined by <k restricted to the subset fk[lN ] and Ṽk from the subspace
uniformity for fk[lN ]. By R21.44, since fk[lN ] is the range of f̃k, the first is a proper
subset of the second.

The final results will be used to describe relationship of τ (U(≺k)) to τ (Ṽk), i.e., τ̃k.
The first lemma contrasts with R21.30.

Lemma R21.46 Let (X,<) be a set with a linear order. Let x0, x1 be a consecutive
pair in X with x0 < x1. Suppose x0 is not the larger of some other consective pair. Assume
A is a dense subset of X with x0 /∈ A but x1 ∈ A. Let τA denote the subspace topology
on A. Then [x1,∞)A ∈ τA but [x1,∞)A /∈ τ (<A) so that τ (<A) is a proper subset of τA.

Proof: First note that [x1,∞) = (x0 ,∞) ∈ τ (<) since x0 < x1 and (x0, x1) = ∅. Thus
we have [x1,∞)∩A = [x1,∞)A ∈ τA. Moreover (−∞, x0] = (−∞, x1) ∈ τ (<) and, since A
is dense, (−∞, x0] ∩ A 6= ∅ so that [x1,∞)A 6= A. Now suppose [x1,∞)A ∈ τ (<A). Then
there is a ∈ A with x1 ∈ (a, x1]A ⊆ [x1,∞)A. a <A x1 means a < x1 so that a ≤ x0. Since
x0 /∈ A, a 6= x0. Since a, x0 is not a consecutive pair in X and A is dense, there is a1 ∈ A
with a < a1 < x0. But a <A a1 <A x1 and so a1 ∈ [x1,∞)A, a contradiction. The second
part of the conclusion follows from the first and R21.28i.

Example R21.47 Let k ≥ 2 be in lN . The lemma will be applied with X being the
remnant ring Rk , A being fk[lN ], and the ordering being <k from [10]. Let x1 = fk(2),
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which is in A. By R19.1.21 it is the larger of a consecutive pair, the smaller being x0 =
fk(−k), which is not in A. By R19.1.19 x0 is not the larger of some other consecutive
pair in X. By R21.46 τ (<A

k ) is a proper subset of the subspace topology from τ (<k), i.e.,
τ (U(<A

k )) is a proper subset of τ (UA(<k)).
Lemma R21.48 Let (X,<) be a set with a linear order. Let A be a dense subset of

X such that, for every consecutive pair in X, the larger is in A and the smaller is not in A.
Let τ ∗ be the topology for A with basis {A} ∪ {[x,∞)A : x is the larger of a consecutive
pair in X}. Then τ (<A) ∨ τ ∗ is the subspace topology induced on A by τ (<).

Proof: First note that X can have no consecutive triple. Assume otherwise, i.e.,
a < b < c in X with (a, b) = ∅ and (b, c) = ∅. Then b must be in A as the larger of
consecutive pair a, b and not in A as the smaller of consecutive pair b, c, a contradiction.
This observation shows that the hypothesis of R21.46 is satisfied for every consecutive pair
in X.

Now let τA denote the subspace topology induced on A by τ (<). By R21.28i and
R21.46 τ (<A) ∨ τ ∗ ⊆ τA. Now let x ∈ X. If x ∈ A, then (−∞, x) ∩ A = (−∞, x)A and
(x,∞) ∩ A = (x,∞)A so that both are in τ (<A). If x /∈ A, since x is not the larger of
a consecutive pair, by density (−∞, x) ∩ A = ∪{(−∞, a)A : a ∈ A, a < x}, which is in
τ (<A). If x is not the smaller of a consecutive pair, by density (x,∞)∩A = ∪{(a,∞)∩A :
a ∈ A, x < a}, which is in τ (<A). If x is the smaller of a consecutive pair, let y be the
larger of the pair. Then (x,∞) = [y,∞) and (x,∞) ∩ A = [y,∞)A, which is in τ ∗. Thus
τ (<A) ∨ τ ∗ contains a subbasis for τA, i.e., τA ⊆ τ (<A) ∨ τ ∗.

The following proposition again uses the linear order ≺k, which last appeared in
R21.45. Since it differs radically from the usual order on the natural numbers, rays will
be labelled with the subscript k.

Proposition R21.49 Let k ≥ 2 be in lN . Let τ ∗

k be the topology for lN with basis
{[n,∞)k : n ∈ lN }. Then τ̃k = τ (U(≺k)) ∨ τ ∗

k .
Proof: R19.1.19 shows that every <k-consecutive pair in Rk has a smaller element

of the form fk(−j) for some j ∈ lN and a larger element fk(l) for some l ≥ 2 in lN . It
follows that R21.48 applies, with X being the remnant ring Rk , A being fk[lN ], and the
ordering being <k. Continuing with that notation, we have that the objects of interest
are all obtained by transference via f̃k from fk[lN ]: τ̃k is the weak topology on lN induced
by f̃k and the subspace topology on A. U(≺k) is the weak uniformity on lN induced by
f̃k and U(<A

k ) so that τ (U(≺k)) is the weak topology on lN induced by f̃k and τ (U(<A
k )).

[n,∞)k = f̃−1
k [[fk(n),∞)A] for all n ∈ lN . By R19.1.8 fk(1) is the smallest element of Rk

so that [1,∞)k = lN and τ ∗

k is the weak topology on lN induced by f̃k and the topology
with basis {A} ∪ {[x,∞)A : x is the larger of a consecutive pair in X}.

The conclusion follows immediately by transference from R21.48.
Corollary R21.50 Let k ≥ 2 be in lN . τ (U(≺k)) is a proper subset of τ̃k.
Proof: Use R21.46 and transference as in the proof of R21.49 to see that [2,∞)k is in

τ̃k but not in τ (U(≺k)). Containment is clear from R21.49.

Albert J. Klein 2011
http://susanjkleinart.com/compactification/
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Added Comment 2013

Dr. Scott Williams (http://www.nsm.buffalo.edu/˜sww/mathprof.html) has pointed
out that the compactification associated with U(<) is called the Dedekind Compactifica-
tion.

Added 2018

In R21.39-R21.41 representations of the compactification class corresponding to U(<)
were described in certain special cases. This note extends that description to the general
case. Whether the comment of Dr. Williams applies only to the special cases, or to the
general case as well, is unknown to me.

The construction below relies on an idea related to the Dedekind cut method of
constructing the reals from the rationals. Most, maybe all, of this is probably known.
Proofs are provided since I have no reference. The presentation and notation may be
unconventional.

Definition R21.Add.1 Let X be a set with linear order <. For S ⊆ X, S is a left
R-set provided x ∈ S and y < x imply y ∈ S.

Clearly left rays, ∅, and X are left R-sets. It is easy to give examples in Q of non-empty
left R-sets which do not have an endpoint, i.e., are not rays.

The collection of all left R-sets, ordered by containment, is linearly ordered, order
complete, and has smallest element ∅ and largest element X. That collection is unsuitable
for the purpose here because, for any x ∈ X, (−∞, x) and (−∞, x] are a consecutive pair.
As a result, it is necessary to proceed by identifying such pairs.

Definition R21.Add.2 Let X be a set with linear order <. The set D consists
of all {S}, where S is a left R-set but not a left ray, and all doubletons of the form
{(−∞, x), (−∞, x]}, where x ∈ X. For D ∈ D, R(D) = ∪{S : S ∈ D}.

Clearly, every left R-set is in at least one element of D and any R(D) must be a left
R-set.
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Note that D need not be a partition of the collection of left R-sets: Let a, b be a
consecutive pair in X with a smaller. Then (−∞, a] = (−∞, b) and so {(−∞, a), (−∞, a]}
and {(−∞, b), (−∞, b]} are distinct elements of D which have a non-empty intersection.

Definition R21.Add.3 Let X be a set with linear order <. Let D1,D2 be in D.
D1 ≤∗ D2 provided R(D1) ⊆ R(D2).

Lemma R21.Add.4 Let X be a set with linear order <. Then <∗ is a linear order
on D.

Proof: Transitivity holds since containment is transitive. Note that R({S}) = S and
R({(−∞, x), (−∞, x]}) = (−∞, x]. Let D1 <∗ D2 and D2 <∗ D1. If both are singletons
or both are doubletons, clearly D1 = D2. The case with one singleton and one doubleton
cannot occur: If, for example, D1 = {S} and D2 = {(−∞, x), (−∞, x]}, the assumption
implies S = (−∞, x], a contradiction since S is not a left ray. Thus <∗ is anti-symmetric.
Finally, let D1,D2 be in D and assume D1 6≤∗ D2, i.e., R(D1) is not a subset of R(D2).
Pick y ∈ R(D1) with y /∈ R(D2) and let x ∈ R(D2). Since R(D2) is a left R-set, y 6≤ x and
so x < y. Since R(D1) is a left R-set, x ∈ R(D1). Thus R(D2) ⊆ R(D1), i.e., D2 <∗ D1.

Lemma R21.Add.5 Let X be a set with linear order <. If X does not have a
smallest element, then {∅} is the smallest element of D. If x0 is the smallest element of
X, then {(−∞, x0), (−∞, x0]} is the smallest element of D.

Proof: First assume X does not have a smallest element. Then ∅ is a left R-set but
not a left ray and so {∅} ∈ D. Since R({∅}) = ∅, {∅} is the smallest of D. Now assume
X has a smallest element, x0. Then ∅ = (−∞, x0) and so there is a unique element of
D containing it, {(−∞, x0), (−∞, x0]}. Since R({(−∞, x0), (−∞, x0 ]}) = {x0} and every
R(D) is non-empty in this case, {(−∞, x0), (−∞, x0]} is the smallest element of D.

Lemma R21.Add.6 Let X be a set with linear order <. If X does not have a
largest element, then {X} is the largest element of D. If x1 is the largest element of X,
then {(−∞, x1), (−∞, x1 ]} is the largest element of D.

Proof: First assume X does not have a largest element. Then the left R-set X is not a
left ray and so the element of D containing X is {X}. Since R({X}) = X, {X} is the largest
element of D. Now assume x1 is the largest element of X. Then X = (−∞, x1] and so the
element of D containing X is {(−∞, x1), (−∞, x1 ]}. Since R({(−∞, x1), (−∞, x1]}) = X,
{(−∞, x1), (−∞, x1]} is the largest element of D.

Lemma R21.Add.7 Let X be a set with linear order <. Then D with <∗ is order
complete.

Proof: Let S be a non-empty subset of D. (S is bounded above since D has a largest
element.) Let S = ∪{R(D) : D ∈ S}. S is a left R-set, being a union of left R-sets. If
S is not a left ray, let D∗ = {S}. Here R(D∗) = S and so D∗ is an upper bound of S.
Let E ∈ D be an upper bound of S. Clearly S ⊆ R(E) and so D∗ ≤∗ E. Thus D∗ is
the least upper bound of S. If S is a left ray, let x ∈ X be its endpoint. If S = (−∞, x],
let D∗ = {(−∞, x), (−∞, x]}. Since R(D∗) = S, D∗ is an upper bound of S. If E is
an upper bound of S, R(D∗) = S ⊆ R(E), i.e., D∗ ≤∗ E. Thus D∗ is the least upper
bound of S. If S = (−∞, x), there are two cases. If x is the larger of a consecutive pair
with y smaller, then S = (−∞, y] and D∗ = {(−∞, y), (−∞, y]} is the least upper bound
of S as in the previous case. Thus assume x is not the larger of a consecutive pair. Let
D∗ = {(−∞, x), (−∞, x]}. Since S ⊆ R(D∗), D∗ is an upper bound of S. Let E be an
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upper bound of S. Clearly S ⊆ R(E). If E = {R} where R is a left R-set but not a
left ray, S must be a proper subset of R. For y ∈ R − S, x ≤ y so that x ∈ R. Thus
R(D∗) ⊆ R(E), i.e., D∗ ≤∗ E. If E = {(−∞, y), (−∞, y]}, x > y cannot hold: If so, by
the hypothesis in this case there is t ∈ X with y < t < x. Since t ∈ S, there is D ∈ S
with t ∈ R(D) ⊆ R(E) = (−∞, y], a contradiction. Thus x ≤ y so that R(D∗) ⊆ R(E).
In both cases, D∗ ≤∗ E and so D∗ is the least upper bound of S.

Corollary R21.Add.8 Let X be a set with linear order <. Then (D, τ (<∗)) is
compact and T2.

Proof: This follows from the previous lemmas and R21.23.

Definition R21.Add.9 Let X be a set with linear order <. Define g : X → D by
g(x) = {(−∞, x), (−∞, x]}.

Lemma R21.Add.10 Let X be a set with linear order <, and let x 6= y be in X.
Then x < y if and only if g(x) <∗ g(y).

Proof: By definition R(g(x)) = (−∞, x] and R(g(y) = (−∞, y]. Then g(x) <∗ g(y) if
and only if (−∞, x] is a proper subset of (−∞, y], which holds if and only if x < y.

Corollary R21.Add.11 Let X be a set with linear order <. Then g is one-to-one.

Proof: This is immediate from the previous lemma.
Lemma R21.Add.12 Let X be a set with linear order <. Let x ∈ X and let

D ∈ D − g[X] with g(x) <∗ D. Then there exists t ∈ X such that g(x) <∗ g(t) <∗ D.

Proof: Since R(g(x)) = (−∞, x] is a proper subset of R(D), there is t ∈ R(D) with
t /∈ (−∞, x]. Then x < t implies g(x) <∗ g(t). Since R(D) is a left R-set, (−∞, t] ⊆ R(D)
and so g(t) ≤∗ D. Since D /∈ g[X], g(t) <∗ D.

Lemma R21.Add.13 Let X be a set with linear order <. Let x ∈ X and let
D ∈ D − g[X] with D <∗ g(x). Then there exists t ∈ X such that D <∗ g(t) <∗ g(x).

Proof: Since D is not in g[X], D = {R}, where R is a left R-set but not a left ray. By
hypothesis, R(D) = R is a proper subset of R(g(x)) = (−∞, x], and R 6= (−∞, x). Thus
there is t ∈ (−∞, x) with t /∈ R(D). Then R(D) is a proper subset of (−∞, t] and t < x
so that D <∗ g(t) <∗ g(x).

Lemma R21.Add.14 Let X be a set with linear order <. Let D,E ∈ D− g[X] with
D <∗ E. Then there exists t ∈ X such that D <∗ g(t) <∗ E.

Proof: Since R(D) is a proper subset of R(E), there is t ∈ X with t ∈ R(E) − R(D).
Since R(D) is a left R-set, any x ∈ R(D) must be less than t and so R(D) is a proper
subset of (−∞, t]. Since R(E) is a left R-set, (−∞, t] ⊆ R(E). Thus D <∗ g(t) ≤∗ E.
Since E /∈ g[X], g(t) <∗ E.

Corollary R21.Add.15 Let X be a set with linear order <. Then g[X] is dense in
(D, τ (<∗)).

Proof: Let D0 be the smallest element of D, and D1 the largest. Possible basic open
sets in τ (<∗) have one of three forms: [D0,D)∗, (D,E)∗, or (D,D1 ]

∗, where D,E ∈ D.
The preceding lemmas show in the various cases that every non-empty basic open set has
a non-empty intersection with g[X].

Lemma R21.Add.16 Let X be a set with a linear order < and let D,E be in D.
Then D,E are a consecutive pair in D if and only if there is a consecutive pair x, y in X
with D = g(x) and E = g(y).

Proof: First assume x, y are a consecutive pair in X with x smaller. By R21.Add.10
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g(x) <∗ g(y). Suppose there is F in D with g(x) <∗ F <∗ g(y). If F = g(t) for some t ∈ X,
then by R21.Add.10 x < t < y, which contradicts the assumption that x, y are a consecutive
pair. If F /∈ g[X], by R21.Add.12 there is t ∈ X with g(x) <∗ g(t) <∗ F <∗ g(y), which
yields the same contradiction. Conversely, assume D,E are a consecutive pair in D with
D smaller. Lemmas R21.Add.12 through R21.Add.14 show that both D and E must be in
g[X]. Let D = g(x) and E = g(y). If x < t < y, then D = g(x) <∗ g(t) <∗ g(y) = E, which
contradicts the assumption that D and E are consecutive. Thus x and y are consecutive.

Corollary R21.Add.17 Let X be a set with linear order <. Then (D, τ (<∗)) is
connected if and only if X has no consecutive pairs.

Proof: By R21.Add.7 D is order complete and so by R21.25 (D, τ (<∗)) is connected
if and only if D has no consecutive elements. The conclusion now follows from the prior
lemma.

The goal here is to show that, given a linearly ordered space (X,<), (D, g) is a T2

compactification in the class corresponding to U(<). The following general lemmas, which
will be needed, involve a tedious multiplicity of cases. At one point, the set A is explicitly
assumed to have at least two elements, a harmless assumption since, if A is τ (<)-dense in
X, A finite implies A = X, in which case the conclusions would be trivial.

Lemma R21.Add.18 Let X be a set with linear order < and let x ∈ X. Then
[x,∞) ∈ τ (<) if and only if x is the smallest in X or x is the larger of a consecutive pair.
Also (−∞, x] ∈ τ (<) if and only if x is the largest in X or x is the smaller of a consecutive
pair in X.

Proof: If x is the smallest in X, [x,∞) = X, which is in τ (<). If t, x is a consecutive
pair with x larger, [x,∞) = (t,∞), which is in τ (<). Now assume [x,∞) is in τ (<).
Because the rays are a subbasis, there are three cases: First suppose x ∈ (−∞, a) ⊆ [x,∞).
For t ∈ X, t < x < a would imply t ∈ [x,∞), a contradiction. Thus t ≥ x, i.e., x
is the smallest of X. Secondly, suppose x ∈ (b,∞) ⊆ [x,∞). In this case b < t < x
would imply t ≥ x, a contradiction. Thus b, x are consecutive with x larger. Thirdly,
suppose x ∈ (−∞, a) ∩ (b,∞) ⊆ [x,∞). In this case, b < t < x < a would imply t ≥ x,
a contradiction. Thus b, x are consecutive with x larger. The second assertion follows
similarly.

Corollary R21.Add.19 Let X be a set with linear order <. Let a, b ∈ X with
a < b. Then [a, b) ∈ τ (<) if and only if a is the smallest element of X or a is the larger of
a consecutive pair in X. Also (a, b] ∈ τ (<) if and only if b is the largest element of X or b
is the smaller of a consecutive pair.

Proof: The first statement follows from the previous lemma and the set equations
[a, b) = [a,∞) ∩ (−∞, b) and [a,∞) = [a, b) ∪ (a,∞). The second statement follows
similarly.

Lemma R21.Add.20 Let X be a set with linear order <. Let A ⊆ X be τ (<)-dense
in X and assume A contains all consecutive pairs of X. Let I be a finite cover of X by
intervals in τ (<). Let I ∈ I be a ray with I 6= ∅ . Then I can be covered by at most two
intervals in τ (<), each of which is contained in some interval of I and all of which have
all endpoints in A.

Proof: If the endpoint of I is in A, {I} works as the required cover. First assume
I = (x,∞) with x /∈ A. Pick I1 in I with x ∈ I1. If x is the smallest in X, there is t ∈ X
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with [x, t) ⊆ I1. Because x is not in A and so not part of a consecutive pair, (x, t) 6= ∅ and
so by density there is a1 ∈ A with x < a1 < t. For the same reasons, there is a2 ∈ A with
x < a2 < a1. Then {(−∞, a1), (a2,∞)} covers I, (−∞, a1) = [x, a1) ⊆ I1, and (a2,∞) ⊆ I,
i.e., the conclusion holds. Since I is non-empty, x cannot be the largest. In the remaining
cases, since x is not part of a consecutive pair, there are r, s ∈ X with x ∈ (r, s) ⊆ I1.
By density again, there are a1, a2, a3 ∈ A such that r < a1 < x < a2 < a3 < s. Then
{(a1, a3), (a2,∞)} covers I, (a1, a3) ⊆ I1, and (a2,∞) ⊆ I, i.e., the conclusion holds.
Now assume I = [x,∞) with x /∈ A. If x is the smallest, then I = X. Pick a1, a2 ∈ A
with a1 < a2. {(a1,∞), (−∞, a2)} is the required cover. The case with x the larger of a
consecutive pair cannot occur by hypothesis, since x /∈ A. The cases when I is a left ray
with endpoint not in A are similar.

Lemma R21.Add.21 Let X be a set with linear order <. Assume X has a largest
element or a smallest element or both. Let A ⊆ X be τ (<)-dense in X and assume A
contains all consecutive pairs of X. Let I be a finite cover of X by intervals in τ (<). Let
I ∈ I with I 6= ∅ have the smallest or largest of X as at least one endpoint. Then I can
be covered by at most three intervals in τ (<), each of which is contained in some interval
of I and all of which have all endpoints in A.

Proof: Let x0 be the smallest of X and x1 the largest. (The cases when X has only one
or the other are implicit in what follows.) The case with I = [x0, x1] = [x0,∞) is covered by
the previous lemma, as are the cases I = (x0, x1] = (x0 ,∞), I = [x0, x1) = (−∞, x1),I =
[x0, x) = (−∞, x), I = [x0, x] = (−∞, x], I = (x, x1 ] = (x,∞), and I = [x, x1 ] = [x,∞).
Also, if both endpoints of I are in A, the cover {I} is as required. Now assume I = (x0, x1).
with x0, x1 /∈ A so that neither is part of a consecutive pair. There exist I0, I1 ∈ I with
x0 ∈ I0 and x1 ∈ I1. By density pick a1 ∈ A ∩ I0 and a2 ∈ (x0, a1) ∩ A. Similarly,
pick a3 ∈ A ∩ I1 and a4 ∈ (a3, x1) ∩ A. Then (−∞, a1) = [x0, a1) ⊆ I0, (a2, a4) ⊆ I,
and (a3,∞) = (a3, x1] ⊆ I1. Also {(−∞, a1), (a2, a4), (a3 ,∞)} covers I and so verifies the
conclusion in this case. If I = (x0 , x1) with x0 /∈ A and x1 ∈ A, pick I0, a1, and a2 as in the
previous case. The set {(−∞, a1), (a2, x1)} works. Likewise, if I = (x0, x1) with x1 /∈ A
and x0 ∈ A, pick I1, a3, and a4 as above and use {(x0, a4), (a3 ,∞)}. For the next case
assume I = (x0, x) with x 6= x1 and x0, x /∈ A. Pick I0, a1, and a2 as above. There is I2 ∈ I
with x ∈ I2. Since x is not the largest or smallest in X and x /∈ A, by R21.Add.19 x is not
an endpoint of I2. By density, there are a3, a4, a5 ∈ I2 ∩ A with a3 < a4 < x < a5. Now
(−∞, a1) ⊆ I0, (a2, a4) ⊆ I, and (a3, a5) ⊆ I2. The set {(−∞, a1), (a2 , a4), (a3 , a5)} covers
I and verifies the conclusion in this case. If I = (x0, x) with x 6= x1, x0 /∈ A, and x ∈ A,
pick I0, a1, a2 as above and use {−∞, a1), (a2, x)}. If I = (x0, x) with x 6= x1, x /∈ A, and
x0 ∈ A, pick I2, a3, a4, a5 as above and use {(x0, a4), (a3, a5)}. If I = (x0, x] with x 6= x1

and x0 /∈ A, by R21.Add.19 x ∈ A. Pick I0, a1, a2 as above and use {(−∞, a1), (a2 , x]}.
Lastly, the various cases associated with (x, x1) or [x, x1) with x 6= x0 follow a similar
pattern.

Lemma R21.Add.22 Let X be a set with linear order <. Let A ⊆ X be τ (<)-dense
in X and assume A contains all consecutive pairs of X. Let I be a finite cover of X by
intervals in τ (<). Let I ∈ I with I 6= ∅. Then I can be covered by at most three intervals
in τ (<), each of which is contained in some interval of I and all of which have all endpoints
in A.
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Proof: By the previous two lemmas, we can assume I has two endpoints, neither
of which is the smallest or largest of X. Note that by R21.Add.19 and the hypothesis,
since I ∈ τ (<), if an endpoint of I is in I, it must also be in A. As before, if both
endpoints of I are in A , {I} can be taken as the required cover. As a first case, assume
I = (x, y) with neither of x, y in A. There exist I0, I1 in I such that x ∈ I0 and y ∈ I1.
Since x, y are not in A, neither is part of a consecutive pair, nor by assumption the
smallest or largest. Thus x is not an endpoint of I0 and y is not an endpoint of I1.
There exist r, s, t, u ∈ X such that x ∈ (r, s) ⊆ I0 and y ∈ (t, u) ⊆ I1. Since (r, x) 6= ∅,
by density, there exists a1 ∈ (r, x) ∩ A. Similarly, there is a3 ∈ (x,min{s, y}) ∩ A and
a2 ∈ (x, a3)∩A. Note that r < a1 < x < a2 < a3 <min{s, y}. In the same way, there exist
a4 ∈ (max{a3, t}, y) ∩ A and a5 ∈ (y, u) ∩ A so that max{a3, t} < a4 < y < a5. Clearly,
(a1, a3) ⊆ I0, (a2, a4) ⊆ I, and (a3, a5) ⊆ I1. The set {(a1, a3), (a2 , a4), (a3, a5)} covers I
and so verifies the conclusion in this case. Next suppose I = (x, y) with x /∈ A and y ∈ A.
Let x ∈ I0 ∈ I. As above, there exist a1, a2, a3 ∈ A ∩ I0 with a1 < x < a2 < a3 < y. The
set {(a1, a3), (a2 , y)} has the required properties. Note that the case I = (x, y] with x /∈ A
is almost identical, since y must be in A. Pick I0, a1, a2, a3 again and use {(a1, a3), (a2, y]}.
As a next case, let I = (x, y) with x ∈ A and y /∈ A. Pick I1 ∈ I and a4, a5, a6 ∈ I1 ∩ A
with x < a4 < a5 < y < a6 and (a4, a6) ⊆ I1. The set {(x, a5), (a4, a6)} works. Lastly, for
I = [x, y) with y /∈ A, pick the same I1, a4, a5, a6 and use the set {[x, a5), (a4, a6)}.

Note that the covers constructed in the last three lemmas cannot be expected to be
unique.

Lemma R21.Add.23 Let X be a set with linear order <. Let A ⊆ X be τ (<)-dense
in X and assume A contains all consecutive pairs of X. Let I be a finite cover of X by
intervals in τ (<). Then there exists J , a finite cover of X by intervals in τ (<), such that
all endpoints of each interval in J are in A and J refines I.

Proof: Construct J by replacing each non-empty I ∈ I with the three (or fewer)
elements of a cover as guaranteed by the three previous lemmas. Clearly J is finite.
Because of the properties of the covers in the lemmas, J has the properties listed in the
conclusion.

Recall the notation <A (R21.26) for the linear order inherited by a subset A and
UA(<) for the subspace uniformity on A from U(<).

Lemma R21.Add.24 Let X be a set with linear order <. Let A ⊆ X be τ (<)-dense
in X and assume A contains all consecutive pairs of X. Let J be an interval in τ (<) with
all endpoints of J in A. Then J ∩ A is an interval in τ (<A).

Proof: As noted in the proofs of R21.28 and R21.30, for x, y ∈ A, (x,∞)∩A = (x,∞)A,
(x, y] ∩A = (x, y]A, and so on through the many cases. Thus J ∩A is an A-interval. If no
endpoints of J are in J , clearly the A-interval J ∩A is in τ (<A). If J is of the form (x, y],
since it is in τ (<), y is either the largest in X or the smaller of a consecutive pair in X.
If y is the largest in X, it is the largest in A. If it is the smaller of a consecutive pair in
X, by hypothesis it is the smaller of a consecutive pair in A. By R21.Add.19, J ∩ A is in
τ (<A). For the other cases with one or both endpoints in J , J ∩A can be similarly shown
to be in τ (<A).

Lemma R21.Add.25 Let X be a set with linear order <. Let A ⊆ X be τ (<)-dense
in X and assume A contains all consecutive pairs of X. Then U(<A) = UA(<).
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Proof: By R21.36 U(<A) ⊆ UA(<). Conversely, a typical element in UA(<) is of the
form U ∩ (A×A), where U ∈ U(<). There exists I a finite cover of X by intervals in τ (<)
with R(I) ⊆ U . By R21.Add.23 there is J , a finite cover of X by intervals in τ (<) such
that all endpoints of each interval in J are in A and J refines I. Then R(J ) is in U(<)
and, since J refines I, R(J ) ⊆ R(I). For each J ∈ J , since the endpoints of J are in A,
by R21.Add.24 J ∩A is an <A-interval in τ (<A). Thus, for JA = {J ∩A : J ∈ J }, R(JA)
is in U(<A). Since R(JA) = R(J ) ∩ (A × A) ⊆ R(I) ∩ (A × A) ⊆ U ∩ (A × A), by the
superset property, U ∩ (A × A) is in U(<A). Thus UA(<) ⊆ U(<A).

Lemma R21.Add.26 Let X,Y be sets with linear orders <X and <Y . Let f : X → Y
be a bijection such that a <X b if and only if f(a) <Y f(b) for all a, b ∈ X. Then
f : (X,U(<X )) → (Y,U(<Y )) is a unimorphism.

Proof: Clearly f and f−1 map intervals to intervals. For example, given a, b ∈ X and
s, t ∈ Y , f [(a, b]] = (f(a), f(b)] and f−1[(s, t)] = (f−1(s), f−1(t)). As a result finite covers
by intervals in the order topologies map back and forth, and so (f×f)[R(I)] = R(J ), where
J = {f [I] : I ∈ I}. Similarly, (f−1 ×f−1)[R(J1)] = R(I1), where I1 = {f−1[J ] : J ∈ J1}.
Thus both f and f−1 are uniformly continuous.

Proposition R21.Add.27 Let X be a set with linear order <. Then (D, g) is a T2

compactification of (X, τ (<)). It is in the compactification class of U(<).

Proof: By R21.Add.8 and R21.Add.15 (D, τ (<∗)) is compact and T2, and g[X] is
τ (<∗)-dense in D. By R21.Add.10 and R21.Add.26, g : (X,U(<)) → (g[X],U(<∗,g[X]))
is a unimorphism, where <∗,g[X] denotes the linear order on g[X] inherited from <∗.
By R21.Add.16, g[X] contains all consecutive pairs of D. By R21.Add.25 U(<∗,g[X]) =
Ug[X](<∗) and so (D, g) is a T2 compactification of (X, τ (<)). By R1.6a it is in the
compactification class corresponding to U(<).

(D, g) may be referred to as the Dedekind compactification of (X,<).

Example R21.Add.28 Let X = (0, 1) ∪ (2, 3) with the linear order inherited from
the usual order on lR . X has exactly three left R-sets which are not left rays: ∅, X, and
(0, 1). Thus (D, g) is a three-point compactification of (X, τ (<)) and D has no consecutive
pairs. Now let Y = [0, 1]∪ [2, 3] with linear order inherited from the usual order on lR . If
i : X → Y is the inclusion map, a < b if and only if i(a) < i(b) and (Y, i) is a four-point
compactification of (X, τ (<)). (Y, i) is not equivalent to (D, g).

As is perhaps suggested by the previous example, the Dedekind compactification is the
smallest order-generated compactification of (X, τ (<)), where ”order-generated” is defined
as in the hypothesis of the next proposition.

Proposition R21.Add.29 Let X be a set with linear order <. Let (Y, f) be a T2

compactification of (X, τ (<)). Assume ≺ is a linear order on Y such that τ (≺) is the
topology of Y and a < b if and only if f(a) ≺ f(b). Then [(D, g)] ≤ [(Y, f)].

Proof: Since Y has a unique uniformity, by R21.15 it must be U(≺). Let V be
the totally bounded uniformity for (X, τ (<)) that corresponds to the compactification
class of (Y, f), i.e., f : (X,V) → (f [X],Uf [X](≺)) is a unimorphism. By hypothesis
and R21.Add.26 f : (X,U(<)) → (f [X],U(≺f [X])) is also a unimorphism. By R21.36
U(≺f [X]) ⊆ Uf [X](≺). For U ∈ U(<), (f × f)[U ] is in U(≺f [X]) ⊆ Uf [X](≺) and so
(f × f)−1 [(f × f)[U ]] = U is in V , i.e., U(<) ⊆ V . By R1.5 [(D, g)] ≤ [(Y, f)].

Example R21.Add.30 Let Z have the usual order. There are exactly two left R-sets
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which are not left rays, ∅ and Z . In this case the Dedekind compactification is a two-point
compactification.

Example R21.Add.30 Let k ∈ lN with k ≥ 2. Let ≺k be the linear order on Z

induced by the order <k on Rk , i.e., for m,n ∈ Z , m ≺k n if and only if fk(m) <k fk(n).
Recall that (Rk , fk) is a T2 compactification of (Z , τk). Let Vk be the unique uniformity
corresponding to the compactification class of (Rk , fk). By R19.1.7 τ (<k) is the topology
of Rk and so, by R21.15ii, U(<k) is the unique uniformity for Rk . By R19.1.19 fk[Z ]
contains all the consecutive pairs of Rk and so, by R21.Add.25, U(<A

k ) = UA(<k), where
A = fk[Z ]. By R21.26 fk from (X,U(≺k)) to (A,U(<A

k )) is a unimorphism and so
U(≺k) corresponds to the compactification class of (Rk , fk), i.e., Vk = U(≺k) and so
τk = τ (Vk) = τ (≺k). By R21.Add.27 (Dk, gk), the Dedekind compactification of (Z ,≺k),
is equivalent to (Rk , fk).
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