
Compactifications and Hyperspaces

This section describes the compactification associated with the hyper-uniformity gen-
erated by a totally bounded uniformity. Two preliminary subsections are needed before
that can be done.

Stable Spaces and Near Compactifications

Stable spaces, which are a generalization of T1 spaces, were defined in [2]. The re-
sults in this section, which are simple and undoubtedly known, are collected here for the
convenience of the reader and for simple reference. Throughout this and the following
subsections, given A, a subset of a topological space (X, τ ), c(A) (or cX(A) if the context
involves several spaces) denotes the closure of A.

Definition R25.1.1 Let (X, τ ) be a topological space. (X, τ ) is stable provided, for
all x ∈ X, x ∈ O ∈ τ implies c({x}) ⊆ O.

Lemma R25.1.2 Every regular space is stable.

Proof: Let (X, τ ) be a regular topological space and let x ∈ O ∈ τ . By regularity
there is G ∈ τ such that x ∈ G ⊆ c(G) ⊆ O and so c({x}) ⊆ c(G) ⊆ O.

Lemma R25.1.3 Let (X, τ ) be a stable topological space and let x, y ∈ X. Then
either c({x}) ∩ c({y}) = ∅ or c({x}) = c({y}).

Proof: Suppose c({x}) ∩ c({y}) 6= ∅. By the definition of stability, x ∈ X − c({y})
would imply c({x}) ∩ c({y}) = ∅. Thus x ∈ c({y}) and so c({x}) ⊆ c({y}). Similarly
c({y}) ⊆ c({x}).

The last lemma says that in a stable space (X, τ ) the closures of singletons form a
partition of X.

Definition R25.1.4 Let (X, τ ) be a stable topological space. C (or C(X) if the
context involves several spaces) is the equivalence relation on X generated by the partition
of closures of singletons.

Lemma R25.1.5 Let (X, τ ) be a stable topological space and let x, y ∈ X. Then

i) The C-equivalence class of x is c({x}).
ii) xCy if and only if x ∈ c({y}).

Proof: When an equivalence relation is determined by a partition, the elements of
the partition are the equivalence classes. Since x ∈ c({x}), i) holds. For ii), xCy if and
only if x, y are in the same element of the partition, i.e., by i) and R25.3, if and only if
c({x}) = c({y}). Part ii) follows easily.

The fundamental fact about stable spaces is the following.
Proposition R25.1.6 Let (X, τ ) be a stable topological space. Then the quotient

space X/C is T1.

Proof: Let π be the projection from X to X/C and let p ∈ X/C . Suppose p is the
equivalence class of x. Then π−1[{p}] is the C-class of x, i.e., c({x}). Since π−1[{p}] is
closed in X, by a basic fact about the quotient topology, {p} is closed in X/C . Thus X/C
is T1.

Lemma R25.1.7 Let (X, τ ) be a stable topological space and let G ⊆ X × X be
open. Assume (a, b) ∈ G. Then c({a}) × c({b}) ⊆ G.
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Proof: There exist O1, O2 ∈ τ such that (a, b) ∈ O1 ×O2 ⊆ G. The conclusion is now
immediate by stability.

In what follows on stability, the focus will be on uniform spaces, which always generate
stable topologies by P2.3 and R25.1.2.

In general, given a uniform space (X,U) and an equivalence relation E on X, the
quotient uniformity, i.e., the largest uniformity on X/E making the projection uniformly
continuous, does not induce the quotient topology on X/E. However, it will be shown
below that the equivalence relation C is an exception. U/C will denote the quotient
uniformity.

Recall that a uniformity always contains a basis of symmetric entourages which are
open in the product topology. For S ⊆ X ×X and x ∈ X, the x-section of S is defined to
be S[x] = {y : (x, y) ∈ S}.

Lemma R25.1.8 Let (X,U) be a uniform space and let π denote the projection from
X onto X/C . Then U/C = {S ⊆ X/C ×X/C : (π × π)[U ] ⊆ S for some U ∈ U}.

Proof: Let V = {S ⊆ X/C × X/C : (π × π)[U ] ⊆ S for some U ∈ U}. For any
W ∈ U/C , by uniform continuity (π × π)−1[W ] ∈ U and (π × π)[(π × π)−1[W ]] ⊆ W
so that U/C ⊆ V . Clearly, for any S ∈ V , (π × π)−1[S] is in U . Thus, by definition
of the quotient uniformity, it is sufficient to show that V is a uniformity. The first four
requirements of definition P2.1 can be routinely verified for any equivalence relation. For
the triangle inequality, let S ∈ V with U ∈ U such that (π × π)[U ] ⊆ S. There is an open,
symmetric W ∈ U such W ◦ W ⊆ U . Let (π(a), π(b)) be in (π × π)[W ] ◦ (π × π)[W ].
Then there exist c, d ∈ X such that (a, c) ∈ W , (d, b) ∈ W , and π(c) = π(d). Since
the projection maps a point to its C-equivalence class, by R25.1.5i c({c}) = c({d}). By
R25.1.7 c({a}) × c({c}) ⊆ W and so (a, d) ∈ W . Thus (a, b) ∈ U and so (π(a), π(b)) ∈ S,
i.e., (π × π)[W ] ◦ (π × π)[W ] ⊆ S.

Lemma R25.1.9 Let (X,U) be a uniform space. Then τ (U/C) is the quotient
topology induced by τ (U) on X/C .

Proof: Since uniform continuity implies continuity, τ (U/C) is contained in the quotient
topology. Now let G ⊆ X/C with π−1[G] in τ (U), where π is the projection. Let π(x) ∈ G
so that x ∈ π−1[G]. There is U ∈ U symmetric and open in the product topology such that
U [x] ⊆ π−1[G]. By R25.1.8 (π×π)[U ]) is in U/C . It is claimed that (π ×π)[U ][π(x)] ⊆ G.
Let π(y) ∈ (π × π)[U ][π(x)]. There is (a, b) ∈ U such that π(a) = π(x) and π(b) = π(y).
By definition of the projection, the image of a point is its equivalence class, i.e., π(a) is
c({a}) = c({x}) and π(b) is c({b}) = c({y}). By R25.1.7 (x, y) is in U and so y ∈ π−1[G],
i.e., π(y) ∈ G as claimed. Thus G ∈ τ (U/C) and so the quotient topology is contained in
τ (U/C).

Corollary R25.1.10 Let (X,U) be a uniform space Then (X/C,U/C) is separated.

Proof: The completely regular topology τ (U/C) is T1 by R25.1.9 and R25.1.6, and so
it is T3 1

2

. By P2.3 the conclusion follows.

Corollary R25.1.11 Let (X, τ ) be a completely regular topological space. Then
X/C with the quotient topology is T3 1

2

.

Proof: By P2.3 there is a uniformity U such that τ (U) = τ . By R25.1.9 and R25.1.6
the conclusion follows.

Proposition R25.1.12 Let (X,U) be a uniform space. Then (X/C,U/C) is totally

2



bounded if and only if (X,U) is totally bounded.

Proof: Let π denote the projection from X onto X/C . A uniformly continuous image
of a totally bounded space must be totally bounded and so, if (X,U) is totally bounded,
so is (X/C,U/C). Now assume (X/C,U/C) is totally bounded and let U ∈ U . there is a
symmetric, open V ∈ U with V ⊆ U . By R25.1.8 (π × π)[V ] ∈ U/C and so there exist
a1, a2, . . . , an ∈ X such that ∪n

i=1(π×π)[V ][π(ai] = X/C . It is claimed that ∪n
i=1U [ai] = X.

Let x ∈ X. For some i, (π(ai), π(x)) ∈ (π × π)[V ] so that there is (y, z) ∈ V such that
π(y) = π(ai) and π(z) = π(x). By definition of the projection, the image of a point is its
equivalence class, i.e., π(y) is c({y}) = c({ai}) and π(z) is c({z}) = c({x}). By R25.1.7
(ai, x) is in V and so in U . Thus x ∈ U [ai] and the claim holds.

Proposition R25.1.13 Let (X,U) be a uniform space. Then (X/C,U/C) is complete
if and only if (X,U) is complete.

Proof: Let π denote the projection from X onto X/C . Assume (X/C,U/C) is com-
plete and let S : D → X be a U-Cauchy net. Since π is uniformly continuous, π ◦ S is
U/C-Cauchy and by completeness it converges to some π(x). It is claimed that S con-
verges to x. Let x ∈ O ∈ τ (U), let U be in U with U [x] ⊆ O, and pick a symmetric,
open V in U with V ⊆ U . By R25.1.8 (π × π)[V ] is in U/C and so there exists d0 ∈ D
such that d ≥ d0 implies π(S(d)) ∈ (π × π)[V ][π(x)]. Let d ≥ d0. There is (y, z) ∈ V
such that (π(y), π(z)) = (π(x), π(S(d)). Then x ∈ c({y}) and S(d) ∈ c({z}) so that by
R25.1.7 (x, S(d)) ∈ V , i.e., S(d) ∈ V [x] ⊆ O and so the claim holds. For the converse
suppose T : E → U/C is U/C-Cauchy. Pick any T1 : E → X such that π ◦ T1 = T .
Now the claim is that T1 is U-Cauchy. Let U ∈ U and pick a symmetric, open V ∈ U
with V ⊆ U . Since (π × π)[V ] ∈ U/C , there is e0 ∈ E such that e, e′ ≥ e0 implies
(π ◦ T1(e), π ◦ T1(e

′)) ∈ (π × π)[V ]. Let e, e′ ∈ E with e, e′ ≥ e0. There is (y, z) ∈ V with
(π(y), π(z)) = (π ◦ T1(e), π ◦ T1(e

′)). As above T1(e) ∈ c({y}) and T1(e
′) ∈ c({z}). By

R25.1.7 again (T1(e), T1(e
′)) ∈ V ⊆ U and the claim is verified. Since (X,U) is complete,

there is x ∈ X such that T1 converges to x. Since π is uniformly continuous, π(x) is the
limit of π ◦ T1 = T . Thus (X/C,U/C) is complete.

An example illustrating the next definition will occur below in R25.3.3. Note that
(Y,V) is not assumed to be separated.

Definition R25.1.14 Let (X,U) be separated and totally bounded. Let (Y,V) be
totally bounded and complete. Assume f : X → Y is a uniform embedding and f [X] is
dense in Y . The triple (Y, f,V) is a near compactification corresponding to U .

Proposition R25.1.15 Let (X,U) be separated and totally bounded and let (Y, f,V)
be a near compactification corresponding to U . Let π be the projection from Y onto
Y/C(Y ). Then (Y/C(Y ), π ◦ f) is in the compactification class corresponding to U and
the unique uniformity for Y/C(Y ) is V/C(Y ).

Proof: By the results above (Y/C(Y ),V/C(Y )) is complete, totally bounded, and
separated. By general facts π ◦f is uniformly continuous and π ◦f [X] is dense in Y/C(Y ).
Now assume a, b ∈ X with a 6= b. There is U ∈ U such that (a, b) /∈ U . Since f is
a uniform embedding, there is V ∈ V such that (f × f)[U ] = (f [X] × f [X]) ∩ V . If
π ◦ f(a) = π ◦ f(b), f(b) ∈ cY ({f(a)}) ⊆ V [f(a)] so that (f(a), f(b)) ∈ V and so, since
f is one-to-one, (a, b) ∈ U , a contradiction. Thus π ◦ f is one-to-one. To see that π ◦ f
is a uniform embedding, let U ∈ U and let V ∈ V with (f × f)[U ] = (f [X] × f [X]) ∩ V .
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There is W ∈ V such that W = W−1 and W ◦ W ◦ W ⊆ V . Let (π ◦ f(x1), π ◦ f(x2))
be in (π × π)[W ] ∩ (π ◦ f [X] × π ◦ f [X]). There is (y1, y2) ∈ W such that π(yi) =
π(f(xi)), i.e., c({yi}) = c({f(xi)}) for i = 1, 2. Then yi ∈ c({f(xi)}) ⊆ W [f(xi)] so that
(f(x1), y1) and (f(x2), y2) are both in W . Using the symmetry and (y1, y2) ∈ W , we see
that (f(x1), f(x2)) is in W ◦W ◦W and so in V . Thus, since f is one-to-one, (x1, x2) ∈ U
and so (π◦f(x1), π◦f(x2)) is in (π◦f×π◦f)[U ]∩(π◦f [X]×π◦f [X]). By R25.1.8 (π×π)[W ]
is in V/C(Y ) and so the containment implies (π ◦ f × π ◦ f)[U ] ∩ (π ◦ f [X] × π ◦ f [X])
is in the subspace uniformity for π ◦ f [X]. Thus π ◦ f is a uniform embedding and the
conclusions follow from R1.6a.

Hyperspaces

In what follows, given a topological space (X, τ ), X̂ denotes the power set of X and
2X denotes the collection of closed subsets of X, both including ∅, which is an isolated
point in the topologies considered here. The literature, e.g., Michael [4], more typically
excludes ∅, probably because of the focus on selections. Subspaces of X̂ are considered
below and may include or exclude ∅.

Most of the results in this subsection can be found in Caufield [1], which also contains
references to earlier sources. Proofs are included for the convenience of the reader.

Definition R25.2.1 Let X be a set and let S ⊆ X × X. H(S) is defined to be
{(A,B) ∈ X̂ × X̂ : A ⊆ S[B] and B ⊆ S[A]}.

Lemma R25.2.2 Let (X,U) be a uniform space. Then {H(U) : U ∈ U} is a basis
for a uniformity on X̂.

Proof: Let U, V ∈ U and let W ∈ U with W ◦ W ⊆ U . It is easy to check that
the diagonal of X̂ is contained in H(U), that H(U ∩ V ) ⊆ H(U) ∩ H(V ), that H(U) is
symmetric, and that H(W ) ◦ H(W ) ⊆ H(U). The conclusion follows.

Definition R25.2.3 Let (X,U) be a uniform space. Û is the uniformity for X̂ with
basis {H(U) : U ∈ U}.

The previous definition is motivated by the following fact, which will not be needed
here: If U is generated by a pseudo-metric ρ, then Û is generated by the Hausdorff pseudo-
metric determined from ρ.

Lemma R25.2.4 Let (X,U) be a uniform space and let iX : X → X̂ by iX(x) = {x}.
Then iX is a unimorphism from (X,U) onto iX [X] with the subspace uniformity from Û .

Proof: Clearly iX is one-to-one and onto iX [X]. Let U ∈ U . It is easy to check that
(U ∩ U−1) ⊆ (iX × iX)−1[H(U)] and so iX is uniformly continuous. It is also routine to
check that H(U ∩ U−1) ∩ (iX [X] × iX [X]) ⊆ (iX × iX )[U ]. The conclusion follows.

Definition R25.2.5 Let X,Y be sets and let f : X → Y . The map f̂ : X̂ → Ŷ is
defined by f̂(A) = f [A].

Lemma R25.2.6 Let (X,U) and (Y,V) be uniform spaces and let f : X → Y . Then

f : (X,U) → (Y,V) is uniformly continuous if and only if f̂ : (X̂, Û) → (Ŷ , V̂) is uniformly
continuous.

Proof: First assume f̂ is uniformly continuous. It is easy to check that f = i−1
Y ◦ f̂ ◦ iX

and so f is also uniformly continuous. Now assume the uniform continuity of f . For V ∈ V ,
it is routine to verify that H((f × f)−1[V ]) ⊆ (f̂ × f̂)−1[H(V )], from which the uniform

continuity of f̂ follows.
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Proposition R25.2.7 Let (X,U) be a uniform space. Then (X,U) is totally bounded
if and only if (X̂, Û) is totally bounded.

Proof: First assume (X̂, Û) is totally bounded, Then each of its subspaces is also
totally bounded. By R25.2.4 (X,U) is unimorphic to a subspace of (X̂, Û) so that (X,U)
is totally bounded. Now assume (X,U) is totally bounded. Let H(U), where U ∈ U ,
be a basic entourage in Û . Let V = U ∩ U−1. There are x1, . . . , xn in X such that
X = ∪n

i=1V [xi]. Let S be the finite set P({x1, . . . , xn}). It is sufficient to show that

X̂ ⊆ ∪{H(U)[S] : S ∈ S}. Let A ∈ X̂ and let S = {xi : V [xi] ∩ A 6= ∅},which is in S. If
a ∈ A, pick xj such that (xj , a) ∈ V . Then xj ∈ S and a ∈ V [S]. Thus A ⊆ V [S] ⊆ U [S].
Since V is symmetric, by definition of S, S ⊆ V [A] ⊆ U [A]. By definition (S,A) ∈ H(U)
and so the needed containment holds.

For the separated property, the situation is less straightforward. The following lemma
is well-known but I don’t have a specific reference.

Lemma R25.2.8 Let (X,U) be a uniform space, let B be a basis for U , and let
A ⊆ X. Then c(A) = ∩{B[A] : B ∈ B}.

Proof: Let t ∈ c(A). For any B ∈ B, since B ⊆ U , B ∩ B−1 ∈ U and (B ∩ B−1)[t] is
a neighborhood of t, A ∩ (B ∩ B−1)[t] 6= ∅, i.e., there is a ∈ A such that (t, a) ∈ B ∩ B−1.
Then t ∈ (B ∩ B−1)[a] ⊆ B[A]. Thus the closure is contained in the intersection. Now let
x ∈ ∩{B[A] : B ∈ B} and let x ∈ O ∈ τ (U). There is U ∈ U such that U [x] ⊆ O. Since B
is a basis, there is B ∈ B with B ⊆ U ∩ U−1. Then x ∈ B[A] ⊆ (U ∩ U−1)[A], i.e., there
is a ∈ A such that (a, x) ∈ U ∩ U−1. Then a ∈ U [x], i.e., O ∩ A 6= ∅. Thus x ∈ c(A).

Corollary R25.2.9 Let (X,U) be a uniform space and let A,B ∈ X̂. Then (A,B) is
in ∩{H(U) : U ∈ U} if and only if c(A) = c(B).

Proof: Let (A,B) ∈ ∩{H(U) : U ∈ U}. Then, for every U ∈ U , A ⊆ U [B] and
so by the previous lemma A ⊆ c(B). Thus c(A) ⊆ c(B). Similarly c(B) ⊆ c(A). For
the converse assume c(A) = c(B) and let U ∈ U . By the lemma A ⊆ c(B) ⊆ U [B] and
B ⊆ c(A) ⊆ U [A]. By definition (A,B) ∈ H(U). Thus (A,B) ∈ ∩{H(U) : U ∈ U}.

Definition R25.2.10 Let (X,U) be a uniform space and let S ⊆ X̂. Û(S) is the
subspace uniformity on S from Û .

Proposition R25.2.11 Let (X,U) be a uniform space and let S ⊆ X̂. Then (S, Û (S))
is separated if and only if A,B ∈ S with A 6= B implies c(A) 6= c(B).

Proof: Recall the definition: Û(S) is separated if and only if ∩{W : W ∈ Û(S)} is
∆S , the diagonal of S. First assume the space is separated and let A,B ∈ S with A 6= B.
There is W ∈ Û(S) such that (A,B) /∈ W . Since Û(S) is a subspace uniformity, there is
U ∈ U such that H(U) ∩ (S × S) ⊆ W . By R25.2.9 (A,B) /∈ H(U) implies c(A) 6= c(B).
For the converse, let A,B ∈ Ŝ with A 6= B. By assumption c(A) 6= c(B). By R25.2.9 there
is U ∈ U such that (A,B) /∈ H(U) and so (A,B) is not in H(U) ∩ (S × S), an element
of Û(S). Thus (A,B) /∈ ∩{W : W ∈ Û(S)}. This shows ∩{W : W ∈ Û(S)} ⊆ ∆S . The
reverse containment is automatic since every entourage contains the diagonal.

Corollary R25.2.12 Let (X,U) be a uniform space. Then (2X , Û(2X)) separated.

Proof: Let A,B be in 2X with A 6= B. Since c(A) = A and c(B) = B, c(A) 6= c(B).

Note that the previous two results do not require that (X,U) be separated. If not, the
resulting hyperspace may be quite trivial. For example, for nonempty X and U indiscrete,
2X has exactly two elements.
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Corollary R25.2.13 Let (X,U) be a uniform space. Then (X̂, Û) is separated if and
only if τ (U) is the discrete topology.

Proof: Assume the space is separated. If τ (U) is not discrete, there is A ∈ X̂ with
A 6= c(A). By R25.2.11 with S = X̂, this says (X̂, Û) is not separated, a contradiction.
Now assume the topology is discrete. Given A,B ∈ X̂ with A 6= B, since c(A) = A and
c(B) = B, c(A) 6= c(B). By R25.2.11, the space is separated.

Completeness also does not in general transfer to the hyperspace uniformity: [1] con-
tains an example with (X,U) complete but (X̂, Û) not complete. For the purpose of
compactification, a simple partial result (R25.2.24 below), which is a corollary of the suf-
ficient conditions for hypercompleteness in [1], will suffice. It will be derived by a different
method, based on an argument from [3].

The idea of universal nets, which corresponds to the concept of ultrafilters and appears
in some older textbooks such as Wilansky [6; p.133], will be used. Since this notion is less
frequently studied than ultrafilters, the proofs of some basic known facts are outlined here.
The domain of a net is assumed to be a non-empty directed set.

Definition R25.2.14 Let X be a set, D a directed set, and S : D → X a net. S is a
universal net provided, for every A ⊆ X, S is eventually in A or S is eventually in X −A.

Lemma R25.2.15 Let X be a set. Every net in X has a universal subnet.

Proof: Let S : D → X be a net in X. Let F be the collection of all A in X̂ such that
S is eventually in A. F is a filter and so is contained in an ultrafilter G. Note that S is
frequently in each element of G. Let E = {(d,G) : S(d) ∈ G ∈ G} and order E as follows:
(d1, G1) ≥ (d2, G2) if and only if d1 ≥D d2 and G1 ⊆ G2. With this order E is a directed
set. Define T : E → D by T (d,G) = d. For d0 ∈ D (d,G) ≥ (d0,X) implies T (d,G) ≥D d0

and so T has the subnet property, i.e., S ◦ T is a subnet of S. S ◦ T is a universal net as
follows: Let A ∈ X̂. Since G is an ultrafilter, either A ∈ G or X − A ∈ G. If A ∈ G, pick
d0 such S(d0) ∈ A. For (d,G) ≥ (d0, A), S(d) ∈ G ⊆ A. Thus S ◦ T is eventually in A.
Similarly, if X − A ∈ G, S ◦ T is eventually in X − A.

Lemma R25.2.16 Let (X, τ ) be a topological space. Then the following are equiva-
lent:

i) (X, τ ) is compact.
ii) Every universal net in X converges.
iii) Every net in X has a convergent subnet.
iv) Every net in X has a cluster point.

Proof: By R25.2.15 ii) implies iii). Assume iii), let S : D → X and let S ◦ T , where
T : E → D, be a subnet of S converging to x0. Let x0 ∈ O ∈ τ and let d0 ∈ D. There is
e0 in E such that e ≥E e0 implies S ◦ T (e) ∈ O. There is e ≥E e0 such that T (e) ≥D d0.
Then S(T (e)) ∈ O. Thus S is frequently in O and x0 is a cluster point of S. Next assume
iv). Let C be a non-empty collection of closed sets with the finite intersection property
and let F be the set of all finite intersections of sets from C. Let D be the non-empty set
{(x, F ) : F ∈ F and x ∈ F}. With ordering (x1, F1) ≥ (x2 , F2) if and only if F1 ⊆ F2, D
is a directed set. Define S : D → X by S(x, F ) = x. Let x0 be a cluster point of the net
S, let C ∈ C, and let x0 ∈ O ∈ τ . For any x ∈ C , (x,C) ∈ D and, since S is frequently in
O, there is (y, F ) ∈ D with (y, F ) ≥ (x,C) and S(y, F ) ∈ O. Since y ∈ F ⊆ C , C ∩O 6= ∅.
Thus x0 ∈ c(C) = C and so x0 ∈ ∩ C. Part i) follows. Finally, assume the space is compact
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and let S : D → X be a universal net. Deny ii). For each x ∈ X, there is Ox ∈ τ with
x ∈ Ox and S frequently (and so eventually by universality) in X − Ox. For any finite
subcover, use the directed set property to see that S is eventually in ∅, a contradiction.

The next definition can be used to describe Kuratowski’s topology of lower semi-
continuity, which will not be used here.

Definition R25.2.17 Let X be a set and let A ⊆ X. A− is defined to be the
collection {B ∈ X̂ : A ∩ B 6= ∅}.

Definition R25.2.18 Let (X, τ ) be a topological space and let S : D → X̂ be a
net. The set lim S is {x ∈ X : x ∈ O ∈ τ ⇒ S is eventually in O−} and lim S is
{x ∈ X : x ∈ O ∈ τ ⇒ S is frequently in O−}.

Lemma R25.2.19 Let (X, τ ) be a topological space and let S : D → X̂ be a net.
Then

i) lim S ⊆ lim S.
ii) Both lim S and lim S are closed.

Proof: Part i) holds since ‘eventually’ implies ‘frequently.’. Now let x ∈ c(lim S) and
let O ∈ τ with x ∈ O. Then there is t ∈ O ∩ lim S and so S is eventually in O. Thus
x ∈ lim S. Similarly lim S is closed.

Lemma R25.2.20 Let (X, τ ) be a compact topological space and let S : D → X̂ be a
net. Let N be a neighborhood of the diagonal in X×X. Then eventually lim S ⊆ N [S(d)].

Proof: Assume lim S 6= ∅. For each x ∈ lim S there is O(x) ∈ τ such that x ∈ O(x)
and O(x) × O(x) ⊆ N . The closed lim S is compact and so there are x1, . . . , xn ∈ lim S
such that lim S ⊆ ∪n

i=1O(xi). For each i, S is eventually in O(xi)
−, i.e. there is di ∈ D

such that d ≥ di implies S(d) ∩ O(xi) 6= ∅. By the directed set property there is d0 ≥ di

for all i. Let d ≥ d0 and let x be in lim S. There is j such that x ∈ O(xj). Since d ≥ dj ,
there is t in S(d) ∩ O(xj ). Then (t, x) ∈ O(xj) × O(xj) and so x ∈ N [t] ⊆ N [S(d)]. The
conclusion follows.

Lemma R25.2.21 Let (X, τ ) be a compact topological space and let S : D → X̂
be a net. Let N be an open neighborhood of the diagonal in X × X. Then eventually
S(d) ⊆ N [lim S].

Proof: Since N is open in X ×X, N [lim S] is open in X and its complement is closed
and so compact. For each x /∈ N [lim S], x is not in lim S and so there is O(x) such
that x ∈ O(x) and it is false that S is frequently in O(x)−, i.e., there is d(x) ∈ D such
that d ≥ d(x) implies S(d) ∩ O(x) = ∅. By compactness there exist x1, . . . , xn such that
X − N [lim S] ⊆ ∪n

i=1O(xi). Pick d0 ∈ D with d0 ≥ d(xi) for i = 1, . . . , n. For d ≥ d0,
S(d) ∩ O(xi) = ∅ and so S(d) ⊆ N [lim S], i.e. the conclusion holds.

Lemma R25.2.22 Let (X, τ ) be a topological space and let S : D → X̂ be a universal
net. Then lim S = lim S.

Proof: By R25.2.19i it is sufficient to show lim S ⊆ lim S. Let x ∈ lim S and let
O ∈ τ with x ∈ O. Since S is universal, either S is eventually in O− or S is eventually in
X̂ − O−. Suppose the latter. Then there is d0 ∈ D such that d ≥ d0 implies S(d) /∈ O−,
i.e., S(d) ∩ O = ∅. But this contradicts x ∈ lim S. Thus S is eventually in O−. By
definition x ∈ lim S.

Proposition R25.2.23 Let (X,U) be a uniform space and assume (X, τ (U)) is com-
pact. Then (X̂, τ (Û)) is compact.
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Proof: Let S : D → X̂ be a universal net. By R25.2.16 it is sufficient to show
that S converges to lim S = lim S, which will be denoted L in this argument. A basic
neighborhood of L has the form H(N)[L], where N is in U and is open in X × X, i.e., N
is an open neighborhood of the diagonal. By R25.2.20 there is d1 ∈ D such that d ≥ d1

implies L ⊆ N [S(d)]. By R25.2.21 there is d2 ∈ D such that d ≥ d2 implies N [S(d)] ⊆ L.
For d0 ∈ D with d0 ≥ di, i = 1, 2, d ≥ d0 implies S(d) is in H(N)[L], which yields the
needed convergence.

Corollary R25.2.24 Let (X,U) be a complete uniform space and assume (X, τ (U))
is compact. Then (X̂, Û ) is complete.

Proof: The uniformity of a compact space must be complete.

Compactifications

In this subsection, given a totally bounded and separated uniform space (X,U), the
compactification of a separated subspace of (X̂, Û) is described.

Lemma R25.3.1 Let X and Y be sets and let f : X → Y be one-to-one. Then f̂ is
one-to-one.

Proof: Suppose A,B ∈ X̂ with f̂(A) = f̂(B), i.e., f [A] = f [B]. If x ∈ A, then there
is b ∈ B such that f(x) = f(b). Since f is one-to-one, x = b and so x ∈ B. Thus A ⊆ B
and similarly B ⊆ A, i.e., A = B as needed.

Lemma R25.3.2 Let (X,U) and (Y,V) be uniform spaces and assume f : X → Y is

one-to-one and uniformly open onto f [X]. Let S ⊆ X̂. Then f̂ |S is uniformly open onto
its image.

Proof: Let U ∈ U . It is sufficient to show that (f̂ |S × f̂ |S)[H(U)] is in the subspace

uniformity from V̂ on f̂ |S [S]. By the assumption of uniformly open for f there is V ∈ V with

(f [X]× f [X])∩ V ⊆ (f × f)[U ]. Let (f̂ |S(A), f̂ |S(B)), i.e., (f [A], f [B]) with A,B ∈ S, be

in (f̂ |S [S]× f̂ |S [S])∩H(V ). By definition f [A] ⊆ V [f [B]] and f [B] ⊆ V [f [A]], from which

it easily follows that A ⊆ U [B] and B ⊆ U [A], i.e., (A,B) ∈ H(U). Thus (f̂ |S(A), f̂ |S(B))

is in (f̂ |S × f̂ |S)[H(U)]. The latter, as a superset of an element in the subspace uniformity,
is also in the subspace uniformity.

The last two lemmas will be applied in a context which begins with a separated,
totally bounded uniform space (X,U). R25.2.11 gives a criterion for S ⊆ X̂ to be a
separated subspace of (X̂, Û ). (By R25.2.12 S = 2X , the most often studied hyperspace,
is a separated subspace.)

Proposition R25.3.3 Let (X,U) be a separated, totally bounded uniform space,
let (Y, f) be in the compactification class corresponding to U , and let V be the unique
uniformity for the topology of Y . Let S ⊆ X̂ and assume (S, Û (S)) is separated. Let c

Ŷ

denote the closure in (Ŷ , τ (V̂)). Then the triple (c
Ŷ

(f̂ |S [S]), f̂ |S , V̂(c
Ŷ

(f̂ |S [S])) is a near

compactification corresponding to Û(S).

Proof: Since a subspace of a totally bounded space is totally bounded, by R25.2.7
(S, Û (S)) is totally bounded as well as separated. The set f̂ |S [S] is dense in its closure.

By R25.2.6 f̂ is uniformly continuous and so the restriction f̂ |S is also. This, R25.3.1, and

R25.3.2 imply f̂ |S is a uniform embedding. By R25.2.23 (Ŷ , V̂) is totally bounded and
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complete, as is the closed subspace (c
Ŷ

(f̂ |S [S]), V̂(c
Ŷ

(f̂ |S [S])). By definition R25.1.14 the
conclusion holds.

Corollary R25.3.4 Let (X,U) be a separated, totally bounded uniform space, let
(Y, f) be in the compactification class corresponding to U , and let V be the unique uni-
formity for the topology of Y . Let S ⊆ X̂ and assume (S, Û(S)) is separated. Let c

Ŷ

denote the closure in (Ŷ , τ (V̂)). Let π denote the projection from cŶ (f̂ |S [S]) onto the

quotient space c
Ŷ

(f̂ |S [S])/C(c
Ŷ
(f̂ |S [S])). Then (c

Ŷ
(f̂ |S [S])/C(c

Ŷ
(f̂ |S [S])), π ◦ f̂ |S) is in

the compactification class corresponding to Û(S).
Proof: This follows from the previous proposition and R25.1.15.
It might be asked if the quotient space in the last corollary is necessary, i.e., does the

equivalence relation identify distinct points? The next few results show that, in the cases
of most interest, the quotient is required.

Lemma R25.3.5 Let (X,U) be a uniform space and let A ∈ X̂. Then c
X̂

({A}) =

{B ∈ X̂ : cX(B) = cX(A)}.
Proof: By R25.2.8 c

X̂
({A}) = ∩{H(U)[{A}] : U ∈ U}. Then B ∈ c

X̂
({A}) if and

only if B ∈ H(U)[A] for every U ∈ U , i.e., if and only if B ⊆ ∩{U [A] : U ∈ U} and
A ⊆ ∩{U [B] : U ∈ U}, i.e., B ⊆ cX(A) and A ⊆ cX(B). The conclusion follows easily.

Lemma R25.3.6 Let (X,U) be a separated, totally bounded uniform space and
let (Y, f) be in the compactification class corresponding to U . Let S ⊆ X̂ and assume
(S, Û (S)) is separated. Suppose for some A ∈ S, f [A] is not closed in Y . Then the

equivalence relation C(c
Ŷ
(f̂ |S [S])) is not equality.

Proof: Pick any A in S with f [A] not closed in Y . Let B be the Y -closure of f [A].

By the previous lemma B is in c
Ŷ

({f [A]}), which, since f [A] ∈ f̂ |S [S], is contained in

c
Ŷ

(f̂ |S [S]). Since the equivalence classes of C(c
Ŷ

(f̂ |S [S])) are the closures of singletons,

the class of {f [A]} contains B 6= f [A] and so C(c
Ŷ

(f̂ |S [S])) is not equality.
Corollary R25.3.7 Let (X,U) be a separated, totally bounded uniform space and

let (Y, f) be in the compactification class corresponding to U . Let S ⊆ X̂ and assume
(S, Û (S)) is separated. Suppose, for some A ∈ S, A is not compact in X. Then the

equivalence relation C(c
Ŷ
(f̂ |S [S])) is not equality.

Proof: Since f is a homeomorphism onto its image, f [A] is not compact in f [X] and
so not in Y . Thus f [A] is not closed in Y and the previous lemma applies.

Corollary R25.3.8 Let (X,U) be a separated, totally bounded uniform space and
let (Y, f) be in the compactification class corresponding to U . Assume (X, τ (U)) is not

compact. Then the equivalence relation C(c
Ŷ

(f̂ |2X [2X ])) is not equality.

Proof: By R25.2.12 (2X , Û(2X)) is separated. Since the non-compact X is in 2X , the
previous lemma applies with S = 2X .

The next few results identify a simpler representation of the compactification in
R25.3.4.

Lemma R25.3.9 Let (Z,W) be a uniform space and let P ⊆ Ẑ.
Then c

Ẑ
(P)/C(c

Ẑ
(P) is unimorphic to c

Ẑ
(P) ∩ 2Z by the map [A] 7→ cZ(A), where [A] is

the equivalence class of A.
Proof: Let A ∈ c

Ẑ
(P). Then c

Ẑ
({A}) is contained in c

Ẑ
(P) and so by R25.3.5 cZ(A)

is in c
Ẑ
(P)∩ 2Z . In addition, R25.1.5i and R25.3.5 show that the rule described is single-
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valued. Thus the rule defines a function. Call it h. If h([A]) = h([B]), i.e., cZ(A) = cZ(B),
again by R23.1.5i and R25.3.5 [A] = [B] and so h is one-to-one. If F ∈ cẐ(P) ∩ 2Z ,
then h([F ]) = F and so h is onto. Now let π denote the projection from c

Ẑ
(P) onto

c
Ẑ
(P)/C(c

Ẑ
(P)). Note that h ◦ π(A) = cZ(A). First the uniform openness of h will be

verified. By R25.1.8, a basic entourage in the quotient uniformity on c
Ẑ
(P)/C(c

Ẑ
(P) has

the form (π × π)[H(W ) ∩ (c
Ẑ
(P) × c

Ẑ
(P))] for some W ∈ W. Let U(W ) denote the

set H(W ) ∩ ((c
Ẑ
(P) ∩ 2Z) × (c

Ẑ
(P) ∩ 2Z)), a basic entourage in the subspace uniformity

on c
Ẑ
(P) ∩ 2Z . Let (A,B) be in U(W ) and note that H(W ) ∩ (c

Ẑ
(P) × c

Ẑ
(P)) also

contains (A,B). Then (h × h)(π × π)(A,B) = (cZ(A), cZ (B)) = (A,B) so that U(W )
is contained in (h × h)[(π × π)[H(W ) ∩ (c

Ẑ
(P) × c

Ẑ
(P)]]. Thus h is uniformly open as

required. Lastly, the uniform continuity of h will be checked. Let W ∈ W and pick
W1 ∈ W such that W1 = W−1

1 and W1 ◦W1 ⊆ W . With U(W ) as above, it is claimed that
(π×π)[H(W1)∩ (c

Ẑ
(P)× c

Ẑ
(P)] is contained in (h×h)−1[U(W )]. Let (π(A), π(B)) be in

(π × π)[H(W1)∩ (c
Ẑ
(P)× c

Ẑ
(P)], where (A,B) ∈ H(W1)∩ (c

Ẑ
(P)× c

Ẑ
(P). From above,

(h × h)(π(A), π(B)) = (cZ(A), cZ (B)). Then cZ(A) ⊆ W1[A] ⊆ W1[W1[B]] ⊆ W [B], with
the last contained in W [cZ(B)], and similarly cZ(B) ⊆ W [cZ(A)]. Thus (cZ(A), cZ (B)) is
in U(W ) and so h is uniformly continuous.

The next lemma is included for clarity, although it might be called obvious and un-
necessary.

Lemma R25.3.10 Let (X,U) be a separated, totally bounded uniform space and
let (Y, f) be in the compactification class corresponding to U . Let u : Y → Z be a
unimorphism. Then (Y, f) and (Z, u ◦ f) are equivalent compactifications of (X, τ (U)).

Proof: As a unimorphism u is also a homeomorphism of the underlying topological
spaces. This easily yields that (Z, u ◦ f) is a compactification. The map u itself is the
homeomorphism needed to show equivalence.

Corollary R25.3.11 Let (X,U) be a separated, totally bounded uniform space and
let (Y, f) be in the compactification class corresponding to U . Let S ⊆ X̂ and assume

(S, Û (S)) is separated. Define g on S by g(S) = cY (f [S]). Then g : S → c
Ŷ

(f̂ [S]) ∩ 2Y

and (c
Ŷ

(f̂ [S]) ∩ 2Y , g) is a T2-compactification of (S, τ (Û(S)) in the class corresponding

to Û(S).

Proof: Let S ∈ S. Then f [S] = f̂(S) is in f̂ [S] and so cŶ ({f [S]}) is contained

in c
Ŷ

(f̂ [S]). By R25.3.5, cY (f [S]) is in c
Ŷ

(f̂ [S]), which verifies the assertion about

the image of g. By R25.3.4 (c
Ŷ

(f̂ |S [S])/C(c
Ŷ
(f̂ |S [S])), π ◦ f̂ |S) is in the compactifi-

cation class corresponding to Û(S), where π is the projection onto the quotient. Let

h : c
Ŷ

(f̂ |S [S])/C(c
Ŷ

(f̂ |S [S])) → c
Ŷ

(f̂ [S]) ∩ 2Y by [A] 7→ cY (A). By the preceding two

lemmas, h is a unimorphism and (cŶ (f̂ [S])∩ 2Y , h ◦π ◦ f̂ |S) is also in the compactification

class corresponding to Û(S). It remains to verify that h ◦ π ◦ f̂ |S = g. Let S ∈ S. Then

h(π(f̂(S))) = h(π(f [S]) = h([f [S]]) = cY (f [S]) = g(S), i.e., the equality holds.

The above presentation of R25.3.11 follows the path by which it was derived. The
result also appears to be directly verifiable, i.e. without the use of the intermediate quotient
space, by a fairly routine argument, although the many details have not been carefully
checked by me.

This subsection closes with several examples relating to suprema, finite-point com-
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pactifications, and Stone-Čech compactifications. The common theme is that these may
not carry over at the hyperspace level.

First is an example showing that suprema of uniformities may not be preserved when
passing to a hyperspace. This is not surprising since there exist many uniformities for X̂
not of the form Û for some uniformity U on X.

Example R25.3.12 Let X be lN with the discrete topology, let Umin be the uni-
formity on X corresponding the class of the one-point compactification, let E(n) be the
equivalence relation equivalence mod n on X, and let Un = Umin ∨ UE(n) where UE(n)

(as defined In R5.2.1) consists of all supersets of E(n). Since E(2) ∩ E(3) = E(6),

U2 ∨ U3 = U6. Obviously, Û2 ∨ Û3 is a subset of Û6. What follows shows that the
containment is proper. From the description of Umin in [8] it is easy to see that a
base for Umin consists of all entourages S(F ), where F is a finite subset of X and
S(F ) = {(x, x) : x ∈ F} ∪ ((X − F ) × (X − F )). Since E(6) ∈ U6, it is sufficient to

show that H(E(6)) is not in Û2 ∨ Û3. Suppose the contrary. Then X has finite subsets F1

and F2 such that H(S(F1) ∩ E(2)) ∩ H(S(F2) ∩ E(3) ⊆ H(E(6)). Pick x1 ∈ X such that
x1 > t for every t ∈ F1 ∪ F2. Let A = {x1, x1 + 1} and let B = {x1 + 3, x1 + 4}. By the
choice of x1, A and B are both subsets of X − (F1 ∪ F2). Since both contain an even and
an odd, (A,B) ∈ H(S(F1) ∩ E(2)). Since x1 ≡ x1 + 3 mod 3 and x1 + 1 ≡ x1 + 4 mod 3,
(A,B) ∈ H(S(F2)∩E(3)). Since x1 6≡ x1 +3 mod 6 and x1 6≡ x1 +4 mod 6, x1 /∈ E(6)[B].
Thus (A,B) /∈ H(E(6)), a contradiction.

The previous example yields another showing that suprema of compactifications may
not be preserved when passing to the hyperspace level. The following uses mixed suprema
as in [11], since it can be shown that τ (Û2) 6= τ (Û3).

Example R25.3.13 Continue the notation for X,Un from the previous example.
Since τ (Un) is discrete, X̂ = 2X and Ûn is separable by R25.2.12. Let (Yn, fn) be in the
compactification class corresponding to Un. Since U2 ∨ U3 = U6, by R13.1.7 (Y6, f6) is in
the compactification class corresponding to the the supremum of the classes of (Y2, f2) and

(Y3, f3). Let (Zn, gn) be in the compactification class corresponding to Ûn. R13.1.7 the

supremum of [(Z2, g2)] and [(Z3, g3)] corresponds to Û2 ∨ Û3. Since the latter is not Û6, by
R13.1.3 the class of (Z6, g6) is not the supremum of [(Z2, g2)] and [(Z3, g3)].

Next is an example showing that finite-point compactification need not be preserved
when passing to a hyperspace.

Example R25.3.14 Again let X be lN with the discrete topology and let Umin

be the uniformity on X corresponding the class of the one-point compactification. As
before, (X̂, Ûmin) is separated. Let (Y, f) be a one-point compactification of X with
Y − f [X] = {α}. For each n ∈ lN let Bn = {f(n), α}. Clearly Bn ∈ 2Y , n 6= j implies

Bn 6= Bj , and Bn /∈ f̂ [X̂]. To see that Bn ∈ cŶ (f̂ [X̂]), let V be in the unique uniformity
for Y . There is O open in Y with α ∈ O and O × O ⊆ V . Since Y is the one-point
compactification of a discrete space, Y − O is a compact, i.e. finite, subset of f [X],
which is open in Y and discrete. Thus W = {(y, y) : y ∈ Y − O} ∪ (O × O) is in the
unique uniformity for Y . Clearly W ⊆ V and H(W ) ⊆ H(V ). Since f is one-to-one,

(O ∩ f [X]) ∪ {f(n)} = f [A] = f̂(A), where A is an infinite subset of X. Note that

f̂(A) ⊆ O ∪ Bn = W [Bn] and Bn ⊆ O ∪ {f(n)} = W [f̂(A)]. Thus H(V )[Bn] ∩ f̂ [X̂] 6= ∅
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and so Bn ∈ c
Ŷ

(f̂ [X̂]) as claimed. Finally by R25.3.11 g : X̂ → c
Ŷ

(f̂ [X̂]) ∩ 2Y , where
g(S) = cY (f [S]), is the embedding for the compactification of interest, which is in the class

corresponding to Ûmin. Bn is not the image of g since α is not in the Y -closure of any
finite subset of f [X]. Thus |c

Ŷ
(f̂ [X̂]) ∩ 2Y − g[X̂]| ≥ ℵ0, i.e., the compactification is not

a finite-point compactification.
Before presenting an example related to Stone-Čech compactification, a few lemmas

are necessary. These are versions of well-known facts.
Lemma R25.3.15 Let (X,U) be a uniform space and let O ∈ τ (U). Then O− is in

τ (Û).
Proof: Let A ∈ O− and let x ∈ A ∩ O. There is U = U−1 in U with U [x] ⊆ O. It

will be shown that H(U)[A] ⊆ O−. Let B ∈ H(U)[A]. Since A ⊆ U [B], there is b ∈ B
such that (b, x) ∈ U . Then (x, b) ∈ U and so b ∈ U [x], i.e., b ∈ B ∩ O, i.e., B ∈ O−. By
definition of the topology generated by a uniformity, O− ∈ τ (Û).

The next definition is related to Kuratowski’s topology of upper semi-continuity.
Definition R25.3.16 Let X be a set and let A ⊆ X. A+ = {B : B ⊆ A}.
Lemma R25.3.17 Let X be a set and let UM be the largest totally bounded unifor-

mity for the discrete topology on X. Let A ⊆ X. Then A+ ∈ τ (ÛM ).
Proof: As noted in R6.3.4, UM is the collection of all supersets of unions of the form

∪{Oi × Oi : i ∈ F}, where F is finite, each Oi is open, and ∪{Oi : i ∈ F} = X. Since
A is clopen, U = (A × A) ∪ ((X − A) × (X − A)) is in UM . Let B ∈ A+. If B = ∅,
H(U)[B] = {∅} ⊆ A+. If B 6= ∅, since B ⊆ A, U [B] = A and so H(U)[B] ⊆ A+. Thus the
conclusion follows.

The notation in the next definition appears in [5].
Definition R25.3.18 Let (X, τ ) be a topological space and let O1, . . . , Oj be in τ .

[O1, . . . , Oj ] is the set (∩j
i=1O

−

i ) ∩ (∪j
i=1Oi)

+.
Lemma R25.3.19 Let (X, τ ) be a topological space. The collection containing {∅}

and [O1, . . . , Oj ] for all finite collections of open sets is a basis for a topology on X̂.

Proof: Since {∅} is in the collection and [X] = X̂ − {∅}, the union of the collection
is X̂. Given [O1, . . . , Oj ] and [G1, . . . , Gk], let O = ∪j

i=1Oi and G = ∪k
i=1Gi. It is easy

to check that [O1, . . . , Oj ] ∩ [G1, . . . , Gk] = [O1 ∩G, . . . , Oj ∩G,O ∩G1, . . . , O ∩Gk]. The
conclusion now follows.

Let the topology generated on X̂ by the basis of the last lemma be denoted τv. It is
a version of the Vietoris topology.

Lemma R25.3.20 Let X be a set and let U be a totally bounded uniformity on X.
Then τ (Û) ⊆ (τ (U))v.

Proof: Let A ∈ O ∈ τ (Û). There is U ∈ U with H(U)[A] ⊆ O. If A is empty,
H(U)[A] = {∅}, which in the basis for (τ (U))v . Otherwise, pick V = V −1 in U such
that V ◦ V ⊆ U and V is open in X × X. By total boundedness, there are x1, . . . , xn in
X such that X = ∪n

i=1V [xi]. That ∪n
i−1(V [xi] × V [xi]) ⊆ U can be easily checked. Let

Oi = V [xi], which is in τ (U) since V is open. Let ∆A = {i : A∩Oi 6= ∅}. It is claimed that
A ∈ [{Oi : i ∈ ∆A}] ⊆ H(U)[A]. Clearly A ∈ O−

i for each i in ∆A. Since X = ∪n
i=1Oi,

A ∈ (∪{Oi : i ∈ ∆A})+. Now let B ∈ [{Oi : i ∈ ∆A}]. Then U [A] ⊇ ∪{Oi : i ∈ ∆A} ⊇ B.
Also, B ∩ Oi 6= ∅ for every i ∈ ∆A implies U [B] ⊇ ∪{Oi : i ∈ ∆A} ⊇ A. Thus the claim is
verified and the conclusion follows.
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Lemma R25.3.21 Let X be a set and let UM be the largest totally bounded unifor-
mity for the discrete topology on X. Then (τ (UM ))v = τ (ÛM ).

Proof: By R25.3.15 and R25.3.17, given O1, . . . , Oj in τ (UM ), [O1, . . . , Oj ] is in τ (ÛM ),

as is {∅} = H(X ×X)[∅]. Thus (τ (UM ))v ⊆ τ (ÛM ). The reverse containment follows from
R25.3.20.

Now an example can be given showing that a uniformity corresponding to the Stone-
Čech compactification may generate a hyper-uniformity which does not correspond to the
Stone-Čech compactification.

Example R25.3.22 Let X be an infinite set and let UM be the largest totally
bounded uniformity for the discrete topology on X. As noted in [8], UM corresponds
to the Stone-Čech compactification of (X, τ (UM )). Let O1 = ∪{[{x}] : x ∈ X}, an open

set in (τ (UM ))v = τ (ÛM ). Let O2 = X̂ − O1. First, it will be shown that O2 is also
open. Let B be in O2, and note that, for x ∈ X, [{x}] = {x}− ∩ {x}+ = {{x}}. Thus,
if B 6= ∅, |B| ≥ 2 so that there exist a, b ∈ B with a 6= b. Clearly, B is in the open set
[X −{a}, {a, b},X −{b}]. Now let A be in [X −{a}, {a, b},X −{b}]. Since A ∈ {a, b}−, at
least one of a, b is in A. If a ∈ A, since A ∈ (X −{a})−, |A| ≥ 2 and A /∈ O1, i.e., A ∈ O2.
Similarly, if b ∈ A, A ∈ O2 and so O2 is a (τ (UM ))v-neighborhood of B. If B = ∅, since {∅}
is in the basis, again O2 is a (τ (UM ))v-neighborhood of B. Since O2 is a neighborhood of all

its points, O2 is in (τ (UM ))v = τ (ÛM ). Now let E = (O1×O1)∪(O2 ×O2), an equivalence
relation on X̂ . For the uniformity UE generated by E, (as in [9]), τ (UE) = {∅, O1, O2, X̂}

and so the topology of the totally bounded uniformity ÛM ∨ UE equals τ (ÛM ). Thus E is

in the largest totally bounded uniformity for X̂ generating τ (ÛM ). Next it will be shown

that E /∈ ÛM . Deny this. Then there is U ∈ UM with H(U) ⊆ E. Without loss of gener-
ality assume U = ∪n

i=1Gi × Gi, where G1, . . . , Gn is an irreducible cover of X and G1 is
infinite. Then there is x ∈ G1 with x /∈ ∪n

i=2Gi. It is easy to check that ({x}, G1) ∈ H(U).

But, since {x} ∈ O1 and G1 ∈ O2, ({x}, G1) /∈ E, a contradiction. Thus ÛM is not the

largest totally bounded uniformity generating τ (ÛM ), i.e., ÛM does not correspond to the

Stone-Čech compactification of (X̂, τ (ÛM )).

Albert J. Klein 2015
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