
Extensions of Auto-Homeomorphisms

In this section the question of whether an auto-homeomorphism of a T3 1
2

space extends
to an auto-homeomorphism of a given compactification is considered. The question of
whether it might extend continuously but not injectively is raised and answered positively
in the added subsection.

General Facts

Definition R32.1.1 Let (X, τ ) be a topological space. An auto-homeomorphism of
(X, τ ) is an onto homeomorphism h : (X, τ ) → (X, τ ).

For emphasis, the definition assumes h[X] = X.
In what follows an extention is understood in the sense of [5]: Let (X, τ ) be a T3 1

2

space and let (Y, f) be a T2-compactification of (X, τ ). A continuous map h : X → X
extends to a continuous H : Y → Y provided H ◦ f = f ◦h. If such an extension H exists,
it must be unique.

Theorem R32.1.2 Let (X, τ ) be a T3 1

2
space. Let (Y, f) be a T2-compactification of

(X, τ ). Let U be the separated, totally bounded uniformity corresponding to the compact-
ification class of (Y, f). Let h : X → X be an auto-homeomorphism. Then the following
are equivalent

i) h has a continuous, one-to-one extension to Y .
ii) h extends to an auto-homeomorphism of Y .
iii) h : (X,U) → (X,U) is a unimorphism.

Proof: Since f [X] is dense in Y, a continuous extension must be onto. The compact-
ness of Y shows that i) implies ii). Now assume h extends to an auto-homeomorphism
H : Y → Y . With these hypotheses the equation H ◦ f = f ◦ h implies f ◦ h−1 = H−1 ◦ f ,
i.e., H−1 is a continuous extension of h−1. By R7.Add.7 h and h−1 are uniformly contin-
uous and so h is a unimorphism. Finally assume iii). By R7.1.3 h extends continuously to
H : Y → Y and h−1 to G : Y → Y . It is easy to check that G ◦H agrees with the identity
map restricted to f [X]. Since the maps are continuous, f [X] is dense, and Y is T2, G ◦H
is the identity on Y . Thus H is one-to-one and i) holds.

The question of whether an auto-homeomorphism can extend continuously to a non-
injective map is not answered by the above.

The next corollary, which might be regarded as obvious, can be easily derived from
the definition of equivalence. What follows is a uniformity-based argument.

Corollary R32.1.3 Let (X, τ ) be a T3 1

2
space. Let (Y, f) and (Z, g) be equivalent

T2-compactifications of (X, τ ). Let h be an auto-homeomorphism of X. Then h extends
to an auto-homeomorphism of Y if and only if h extends to an auto-homeomorphism of Z.

Proof: The given equivalent compactifications are in the same compactification class,
which corresponds to a unique separated totally bounded uniformity U . The question of
whether h : (X,U) → (X,U) is a unimorphism does not depend on the class representative.

Next two extreme cases are dealt with.
Proposition R32.1.4 Let (X, τ ) be a T3 1

2
space. Every auto-homeomorphism of X

extends to an an auto-homeomorphism of βX, the Stone-Čech compactification of X.
Proof: Let h be an auto-homeomorphism of X. Both h and h−1 are continuous and so

by the characterizing property of Stone-Čech compactifications, both extend to βX. Let
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UM be the uniformity corresponding to the class of the Stone-Čech compactification of X.
By R7.Add.7 both h and h−1 are uniformly continuous from (X,UM ) to itself, i.e., h is a
unimorphism. The conclusion now follows from R32.1.2.

The next proof implicitly uses R32.1.3 by using a specific representative from the class
of the one-point compactification.

Proposition R32.1.5 Let (X, τ ) be a non-compact, locally compact, T2 space. Every
auto-homeomorphism of X extends to an an auto-homeomorphism the one-point compact-
ification of X.

Proof: Let h be an auto-homeomorphism of X and let X+ = X ∪ {x0}, where x0

is some point not in X. Let τ+ be the topology of the one-point compactification, i.e.,
O ∈ τ+ if and only if O∩X ∈ τ and x0 ∈ O implies X−O is compact. The embedding ι+

is inclusion, i.e., ι+(x) = x. Define H : X+ → X+ by H(x0) = x0 and H|X = h. Clearly
H is a bijection and H ◦ ι+ = ι+ ◦ h. Let O ∈ τ+. If x0 /∈ O, then H−1[O] = h−1[O]
which is in τ by the continuity of h. If x0 ∈ O, then O = G ∪ {x0}, where G ∈ τ and
X − G is compact. H−1[O] = h−1[G] ∪ {x0}. H−1[O] ∩ X = h−1[G] which is in τ .
X −H [O] = X − h−1[G] = h−1[X −O], which is compact since h−1 is continuous. Thus
H−1[O] ∈ τ+ and so H is continuous. By R32.1.2 H is an auto-homeomorphism of X+

which extends h.

Proposition R32.1.6 Let (X, τ ) a T3 1

2
space and let h be an auto-homeomorphism of

X. Let ∆ be a non-empty set. Let {(Yα, fα) : α ∈ ∆} be a collection of T2 compactifications
of (X, τ ). Assume, for every α ∈ ∆, h has a an extension to an auto-homeomorphism Hα

of Yα. Then there exists an auto-homeomorphism H of ∨Yα, which is an extension of h.

Proof: By R7.1.5 both h and h−1 have a continuous extensions, H and G respectively,
to ∨Yα. It is easy to check that G◦H is the identity map on f [X], where f is the embedding
from X into ∨Yα. Again, because of density and the image space being T2, G ◦H is the
identity map on ∨Yα. Thus H is one-to-one and so an auto-homeomorphism by R32.1.2.

Image Uniformities

In what follows a given permutation of a set is not assumed to have any continuity or
uniform continuity properties unless explicitly stated.

Definition R32.2.1 Let (X,U) be a uniform space and let σ be a permutation of X.
Imσ(U) is defined to be {S ⊆ X ×X : (σ × σ)[U ] ⊆ S for some U ∈ U}.

The first lemma records some expected facts, which depend heavily on the bijectivity
of the given map.

Lemma R32.2.2 Let (X,U) be a uniform space and let σ be a permutation of X.
Then

i) Imσ(U) is a uniformity on X.
ii) If U is separated, then so is Imσ(U).
iii) If U is totally bounded, then so is Imσ(U).
iv) σ : (X,U) → (X, Imσ(U))) is a unimorphism.

Proof: For i): The required properties transfer from U as follows. Each element
of Imσ(U) contains the diagonal of X × X because σ is onto and each element of U
does. The superset property is clear from the definition and the symmetric property
follows from (σ × σ)[U−1] = ((σ × σ)[U ])−1 . Because σ is one-to-one, (σ × σ)[U ∩ V ] =
(σ×σ)[U ]∩(σ×σ)[V ] and so the intersection property holds. Finally, since σ is one-to-one,
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(σ×σ)[V ◦V ] = (σ×σ[V ]◦(σ×σ)[V ] so that the triangle property holds. By definition P2.1
Imσ(U) is a uniformity. Now assume U is separated and let a, b ∈ X with a 6= b. Because σ
is an onto function, there are c, d ∈ X with c 6= d such that σ(c) = a and σ(d) = b. There
is U ∈ U with (c, d) /∈ U . Because σ is one-to-one, (a, b) /∈ (σ × σ)[U ]. Thus ii) holds.
For the permutation σ, U ∈ U , and x1, . . . , xn ∈ X, σ[∪n

i=1U [xi]] = ∪n
i=1(σ× σ)[U ][σ(xi)].

This implies part iii). Lastly, (σ × σ)−1[(σ × σ)[U ]) = U and so σ : (X,U) → (X, Imσ(U))
is uniformly continuous. For U ∈ U , (σ−1 × σ−1)−1[U ] = (σ × σ)[U ], which is in Imσ(U))
by definition, and so σ−1 : (X, Imσ(U)) → (X,U) is also uniformly continuous. Thus iv)
holds.

Lemma R32.2.3 Let (X,U) be a uniform space and let σ be a permutation of X.
Assume σ : (X,U) → (X,U) is uniformly continuous. Then U ⊆ Imσ(U)).

Proof: Let U ∈ U . By hypothesis (σ × σ)−1[U ] is also in U . By definition
(σ × σ)[(σ × σ)−1 [U ] = U is in Imσ(U)).

Corollary R32.2.4 Let (X, τ ) a T3 1
2

space and let h be an auto-homeomorphism of

X. Let (Y, f) be a T2-compactification of (X, τ ). Let U be the separated, totally bounded
uniformity corresponding to the compactification class of (Y, f). Then h extends to an
auto-homeomorphism of Y if and only if Imh(U) = U .

Proof: The sufficiency of the condition follows from R32.1.2 and R32.2.2iv. For neces-
sity, if h extends to an auto-morphism, by R32.1.2 h : (X,U) → (X,U) is a unimorphism
and so, for every U ∈ U , (h × h)[U ] is in U , which implies Imσ(U) ⊆ U . This and the
previous lemma show Imσ(U) = U .

Lemma R32.2.5 Let (X,U) be a uniform space and let σ be a permutation of X.
Assume σ : (X, τ (U)) → (X, τ (U)) is open. Then τ (Imσ(U)) ⊆ τ (U).

Proof: Let b ∈ G ∈ τ (Imσ(U)) and let a = σ−1(b). There is U ∈ U such that
(σ× σ)[U ][b] ⊆ G. There is O ∈ τ (U) such that a ∈ O ⊆ U [a]. By hypothesis σ[O] ∈ τ (U)
and clearly b ∈ σ[O]. Then σ[O] ⊆ G as follows. Let c ∈ σ[O] so that σ−1(c) ∈ O ⊆ U [a].
Thus (a, σ−1(c)) ∈ U so that (b, c) = (σ(a), σ(σ−1(c))) ∈ (σ× σ)[U ] and c ∈ (σ × σ)[U ][b],
which is contained in G. This shows that G is a τ (U)-neighborhood of all its points, i.e.,
G ∈ τ (U).

Lemma R32.2.6 Let (X,U) be a uniform space and let σ be a permutation of X.
Assume σ : (X, τ (U)) → (X, τ (U)) is continuous. Then τ (U) ⊆ τ (Imσ(U)).

Proof: Let x ∈ O ∈ τ (U). Since σ−1[O] ∈ τ (U) by continuity, there is U ∈ U with
U [σ−1(x)] ⊆ σ−1[O]. By definition (σ × σ)[U ] ∈ Imσ(U). Claim: (σ × σ)[U ][x] ⊆ O. Let
t ∈ (σ×σ)[U ][x] so that (σ−1(x), σ−1(t)) ∈ U and σ−1(t) ∈ U [σ−1(x)], which is contained
in σ−1[O]. Then t ∈ O and the claim holds. Thus O ∈ τ (Imσ(U))

Corollary R32.2.7 Let (X,U) be a uniform space. Let h be an auto-homeomorphism
of (X, τ (U)). Then τ (Imh(U)) = τ (U).

Proof: This is immediate from R32.2.5 and R32.2.6.

The following results describe a construction possible based an auto-homeomorphism.
It would be of interest if the auto-homeomorphism extends continuously to a compactifi-
cation, with the extension not being one-to-one. In what follows, for an map m : X → X
and positive integer n, mn denotes repeated composition.

Definition R32.2.8 Let (X,U) be a uniform space. Let σ be a permutation of X. For
n ∈ lN , define Imn

σ(U) inductively by Im1
σ(U) = Imσ(U) and Imn+1

σ (U) = Imσ(Imn
σ(U)).
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Lemma R32.2.9 Let (X,U) be a uniform space. Let h be an auto-homeomorphism
of (X, τ (U)) with h : (X,U) → (X,U) uniformly continuous. Let n ∈ lN . Then

i) Imn
h(U) = Imhn(U).

ii) h : (X, Imn
h(U)) → (X, Imn

h(U)) is uniformly continuous.
iii) Imn

h(U) ⊆ Imn+1
h (U)

iv) h : (X, Imn
h(U)) → (X, Imn+1

h (U)) is a unimorphism.
v) hn : (X,U) → (X, Imn

h(U)) is a unimorphism.
vi) τ (Imn

h(U)) = τ (U).
vii) If U is separated and totally bounded, then Imn

h(U) is seprated and totally
bounded.

Proof: Part i) follows by induction from the definitions and the easy checked fact that,
for S ⊆ X×X, (hn+1×hn+1)[S] = (h×h)[(hn×hn)[S]]. For part ii) proceed by induction
again. If n = 1, by R32.2.2iv h : (X,U) → (X, Im1

σ(U)) is uniformly continuous. With the
hypothesis, R32.2.3 shows that U ⊆ Im1

σ(U) and so h is also uniformly continuous with
the larger domain uniformity. Now assume h : (X, Imn

h(U)) → (X, Imn
h(U)) is uniformly

continuous. A similar argument using the previous definition, R32.2.2iv, and R32.2.3 shows
h : (X, Imn+1

h (U)) → (X, Imn+1
h (U)) is also uniformly continuous. Part iii) follows from ii)

and R32.2.3, and part iv) from the definition and R32.2.2iv. The last three parts proceed
by induction. When n = 1, v) restates R32.2.2iv. Now assume hn : (X,U) → (X, Imn

h(U))
is a unimorphism. Since the composition of two unimorphisms is again a unimorphism,
by part iv) and the induction hypothesis hn+1 = h ◦ hn is a unimorphism from (X,U) to
(X, Imn+1

h (U)). Thus v) holds. When n = 1, part vi) restates R32.2.7. In the induction
step τ (Imn

h(U) = τ (U) so that R32.2.7 and the definition yield τ (Imn+1
h (U)) = τ (Imn

h(U)),
which is τ (U). Part vii) follows from the second and third parts of R32.2.2, the definition,
and a similarly routine induction.

Lemma R32.2.10 Let (X,U) be a uniform space. Let h be an auto-homeomorphism
of (X, τ (U)) with h : (X,U) → (X,U) uniformly continuous. Let j ∈ lN and assume
Imj+1

h (U) = Imj
h(U). Then Imn

h(U) = Im1
h(U) for all n ∈ lN .

Proof: First note by induction that Imn
h(U) = Imj

h(U) for all n ≥ j. By hypothesis this

holds when n = j. If it is true for some n ≥ j, Imn+1
h (U) = Imh(Imn

h(U)) = Imh(Imj
h(U)) =

Imj+1
h (U) = Imj

h(U) and so the claim holds. Now let t be the smallest in {n : Imn+1
h (U) =

Imn
h(U)}, which is non-empty by hypothesis. If t = 1, the initial observation shows that the

conclusion holds. Suppose t > 1 and let V ∈ Imt
h(U). (h× h)[V ] is in Imt+1

h (U) = Imt
h(U)

and so by R32.2.9i there is U ∈ U such that (ht × ht)[U ] ⊆ (h × h)[V ]. By applying
(h×h)−1 one obtains (ht−1×ht−1)[U ] ⊆ V . Thus V ∈ Imt−1

h (U) and Imt
h(U) ⊆ Imt−1

h (U).
By that, R32.2.9ii, and R32.2.3 Imt−1

h (U) = Imt
h(U), which contradicts the assumption

that t > 1.

Corollary R32.2.11 Let (X,U) be a uniform space and assume that h is an auto-
homeomorphism of (X, τ (U)) with h : (X,U) → (X,U) uniformly continuous. Let j ∈ lN

with Imj+1
h (U) = Imj

h(U). Then Im1
h(U) = U .

Proof: Let W ∈ Im1
h(U). There is V ∈ U such that (h × h)[V ] ⊆ W . By definition

(h × h)[(h × h)[V ]] is in Im2
h(U), which equals Im1

h(U) by R32.2.10. Thus there is U ∈ U
with (h×h)[U ] ⊆ (h×h)[(h×h)[V ]. By applying (h×h)−1 one obtainsU ⊆ (h×H)[V ] ⊆ W
and so Im1

h(U) ⊆ U . By R32.2.3 the conclusion follows.
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In the next corollary the compactifications and extensions exist based on the above,
[3], and [5]. With the stated hypotheses, R32.2.9vi shows that both the compactifications
mentioned are compactifications of the same T3 1

2
topology.

Corollary R32.2.12 Let (X,U) be a separated, totally bounded uniform space. Let
h be an auto-homeomorphism of (X, τ (U)) with h : (X,U) → (X,U) uniformly continuous.
Let U correspond to the compactification class of the T2-compactification (Y, f). Let n be
in lN and let Imn

h(U) correspond to the compactification class of the T2-compactification
(Yn, fn). If the extension of h from Y to Y is not one-to-one, then the extension of h from
Yn to Yn is also not one-to-one.

Proof: Assume the extension of h from Y to Y is not one-to-one. Im1
h(U) 6= U by

R32.2.4. By R32.2.11 Imn+1
h (U) 6= Imn

h(U). By R32.2.4 again the extension of h from Yn

to Yn is also not one-to-one.

Lemma R32.2.13 Let (X,U) be a uniform space. Let h : (X,U) → (X,U) be
uniformly continuous with h an auto-homeomorphism of (X, τ (U)). Assume Im2

h(U) 6=
Im1

h(U). Let n ∈ lN with n ≥ 2. Then h : (X,U) → (X, Imn
h(U)) is not uniformly

continuous.

Proof: Deny the conclusion and let V ∈ Imn
h(U). Then (h × h)−1[V ] ∈ U and so

(h × h)[(h × h)−1[V ] = V is in Im1
h(U). Thus Imn

h(U) ⊆ Im1
h(U). R32.2.9iii implies

Im1
h(U) ⊆ Im2

h(U) ⊆ Imn
h(U). Thus Im1

h(U) = Im2
h(U), a contradiction.

Definition R32.2.14 Let (X,U) be a uniform space. Let h : (X,U) → (X,U) be
uniformly continuous with h an auto-homeomorphism of (X, τ (U)). The uniformity Vh(U)
is defined as ∨{Imn

h(U) : n ∈ lN }.
Lemma R32.2.15 Let (X,U) be a uniform space. Let h be an auto-homeomorphism

of (X, τ (U)) with h : (X,U) → (X,U) uniformly continuous. Then

i) Vh(U) = ∪{Imn
h(U) : n ∈ lN }.

ii) τ (Vh(U)) = τ (U).
iii) h : (X,Vh(U)) → (X,Vh(U)) is a unimorphism.
iv) If h : (X,U) → (X,U) is a unimorphism, then Vh(U) = U .
v) If U is separated and totally bounded, Vh(U) is also separated and totally
bounded..

Proof: Since Vh(U) is an upper bound, ∪{Imn
h(U) : n ∈ lN } ⊆ Vh(U). By R32.2.9iii

these uniformities form an ascending chain and so checking that ∪{Imn
h(U) : n ∈ lN } is a

uniformity is routine. Therefore it must be the least upper bound, i.e., i) holds. Part ii)
follows from R32.2.9vi and P2.14. For part iii) let V ∈ Vh(U). By i) V ∈ Imn

h(U) for some
n. If n = 1, (h×h)−1[V ] ∈ U by R32.2.2iv and U ⊆ Im1

h(U) ⊆ Vh(U) by R32.2.3. If n ≥ 2,
By R32.2.2iv (h × h)−1[V ] is in Imn−1

h (U) ⊆ Vh(U). Thus h is uniformly continuous. By
definition (h × h)[V ] ∈ Imn+1

h (U) ⊆ Vh(U) and h is given to be a permutation. Thus iii)
holds. For part iv) assume the unimorphism, which implies (h× h)[U ] ∈ U for all U ∈ U ,
i.e., Im1

h(U) ⊆ U . That and R32.2.3 show that Im1
h(U) = U . A routine induction shows

Imn
h(U) = U for all n and so by part i) Vh(U) = U . Finally, assume U is separated and

totally bounded. Since U ⊆ Im1
h(U) ⊆ Vh(U), the larger uniformity is separated because

the smaller is. By R32.2.9vii and P2.13, Vh(U) is totally bounded.

Corollary R32.2.16 Let (X,U) be a separated, totally bounded uniform space. Let
h be an auto-homeomorphism of (X, τ (U)) with h : (X,U) → (X,U) uniformly continuous.
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Let U correspond to the compactification class of the T2-compactification (Y, f). For n in
lN let Imn

h(U) correspond to the compactification class of the T2-compactification (Yn, fn).
Let Vh(U) correspond to the T2-compactification (Z, g). Then the class of (Z, g) acts as
the supremum of the classes of the (Yn, fn).

Proof: Since Vh(U) is defined as the supremum of {Imn
h(U) : n ∈ lN }, the conclusion

is immediate from R13.1.7.

The previous conclusion could be written more concisely in terms of equivalence,
(Z, g) ≈ ∨∞

n=1(Yn, fn), or loosely as a pseudo-equation, (Z, g) = ∨∞
n=1(Yn, fn).

Corollary R32.2.17 Let (X,U) be a separated, totally bounded uniform space. Let
h be an auto-homeomorphism of (X, τ (U)) with h : (X,U) → (X,U) uniformly continuous.
Let Vh(U) correspond to the class of the T2-compactification (Z, g). Then h extends to an
auto-homeomorphism of Z.

Proof: This follows from R32.2.15iii and R32.1.2.
Finite-Point Compactifications

Proposition R32.3.1 Let (X, τ ) be a locally compact T2 space and let h : (X, τ ) →
(X, τ ) be an auto-homeomorphism. Let (Y, f) be a finite-point compactification of (X, τ )
and assume h extends continuously to H : Y → Y . Then H is an auto-homeomorphism.

Proof: The extension equation H ◦ f = f ◦h and the fact that f and h are one-to-one
show that H restricted to f [X] is one-to-one. Since h is onto, H[f [X]] = f [X]. Because Y
is compact and T2, the continuity of H and the density of f [X] imply H is onto Y . Since
H is a function, i.e. single-valued, H restricted to the finite set Y − f [X] must be onto
Y − f [X], and the finiteness implies the restricted map is also on-to-one. It is now easy to
check that H is one-to-one on Y . The conclusion follows from R32.1.2.

For convenience, some terminology and facts from [4] will now be summarized. Let
(X, τ ) be a locally compact T2 space. For n ∈ lN , an n-star is a set of pairwise disjoint open
sets, {G1 . . . , Gn}, such that K, the complement of ∪n

i=1Gi in X, is compact and K ∪Gi

is non-compact for each i. Each n-star determines an n-point compactification described
as follows. Let Y = X ∪ {p1, . . . , pn} where pi /∈ X for each i and i 6= j implies pi 6= pj .
Let ρ = {O ⊆ Y : O ∩ Y ∈ τ and pi ∈ O implies (X −O) ∩Gi has compact closure in X}
and let f : X → Y be inclusion, f(x) = x. With the topology ρ on Y , (Y, f) is an n-point
T2-compactification of (X, τ ), which is called the compactification determined by the given
n-star. Each finite-point compactification of (X, τ ) is equivalent to the compactification
determined by an n-star for some n.

Proposition R32.3.2 Let (X, τ ) be a locally compact T2 space and let h : (X, τ ) →
(X, τ ) be an auto-homeomorphism. Let (Y, f) be the n-point compactification determined
by the n-star {G1, . . . , Gn}. Then h extends continuously to Y if and only if there is σ, a
permutation of {1, . . . , n}, such that (X − h−1[Gj ]) ∩Gσ(j) has compact closure in X for
each 1 ≤ j ≤ n.

Proof: First assume h extends continuously to H. As in the proof of R32.3.1, H
restricted to {p1, . . . , pn} is one-to-one and onto {p1, . . . , pn}. Thus a permutation σ of
{1, . . . , n} is induced by σ(k) = i providedH−1(pk) = pi. Now let 1 ≤ j ≤ n. By definition
of the topology ρ, Gj ∪ {pj} ∈ ρ. Thus H−1[Gj ∪ {pj}] = h−1[Gj ] ∪ {pσ(j)} is also in ρ.
X −H−1[Gj ∪ {pj}] = X − h−1[Gj ] and so, by the definition of ρ, (X − h−1[Gj ]) ∩Gσ(j)

has compact closure in X. For the converse assume σ exists and define H by H(x) = h(x)
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for x ∈ X and H(pσ(k)) = pk. It is easy to check that H ◦ f = f ◦ h, i.e., H extends h.
Thus it is sufficient to show that H is continuous. Let O ∈ ρ and write O = O1 ∪S, where
O1 = O ∩ X, which is in τ , and S ⊆ {p1, . . . , pn}. H−1[O] ∩X = h−1[O1], which is in τ
because h is continuous. Let pσ(k) ∈ H−1[S] so that H(pσ(k)) = pk ∈ O. Then
(X − h−1[O1])∩Gσ(k) ⊆ ((X −h−1[Gk])∩Gσ(k))∪ ((X − h−1[O1])∩ h−1[Gk])) as follows:
Let t ∈ (X − h−1[O1]) ∩ Gσ(k) with t /∈ (X − h−1[Gk]) ∩ Gσ(k). It’s given that t ∈ Gσ(k)

so that t /∈ X − h−1[Gk], i.e., t ∈ h−1[Gk]. It’s also given that t ∈ X − h−1[O1] so that
t ∈ (X−h−1[O1])∩h−1 [Gk]) and the claim is verified. Note that (X−h−1[O1])∩h−1 [Gk]) =
h−1[(X − O) ∩ Gk], which has compact closure in X because O ∈ ρ, pk ∈ O, and h is a
homeomorphism. The other component in the union has compact closure in X by the
hypothesis for this part. (X − h−1[O1]) ∩ Gσ(k), which equals (X −H−1[O]) ∩Gσ(k), has
compact closure in X because closure distributes over finite unions,. Thus H−1[O] ∈ ρ so
that H is continuous as required.

Comment: The previous result seems somehow analogous to R5.1.5, but whether
either is a corollary of the other is unclear. Perhaps both are corollaries of some unidentified
more general result.

Corollary R32.3.3 Every auto-homeomorphism of lR extends to an auto-
homeomorphism of the 2-point compactification of lR .

Proof: By R5.1.8 all 2-point compactifications of lR are equivalent and so, by R32.1.3,
extendibility can be tested using a convenient representative, say the 2-point compacti-
fication determined by the 2-star {G1 = (−∞,−1), G2 = (1,∞)}. Let h be an auto-
homeomorphism of lR . By R32.3.1, it is sufficient to show continuous extendability. The
Intermediate Value Theorem implies that h must be strictly increasing or strictly de-
creasing. In the case that h is strictly increasing h−1 is also strictly increasing so that
h−1[G1] = (−∞, h−1(−1)) and h−1[G2] = (h−1(1),∞). Let σ be the identity on {1, 2}.
The complement of h−1[G1] intersected with G1 is [h−1(−1),∞) ∩ (−∞,−1), which has
compact closure in lR . Likewise, (lR −h−1[G2])∩G2 has compact closure in lR , and so h
extends continuously by R32.3.2. The case of h strictly decreasing is similar, with σ(1) = 2
and σ(2) = 1.

Example R32.3.4 Let lNhave the discrete topology with (Y, f) the compactification
determined by the 2-star {G1, G2}, where G1 is the set of evens and G2 is the set of odds.
A homeomorphism of lNwhich does not extend continuously to Y will be constructed. For
j = 1, 2, 3 let Cj be the equivalence class of j mod 3. Note that C2 = {3i−1 : i ∈ lN } and
the ith element is even when i is odd and odd when i is even. C3 = {3i : i ∈ lN } and in
that set the ith element is odd when i is odd and even when i is even. Define h by h(x) = x
for x ∈ C1, h(3i − 1) = 3i for 3i − 1 ∈ C2, and h(3i) = 3i − 1 for 3i ∈ C3. It is easy to
check that h is a permutation of lN and so a homeomorphism of the discrete space. Note
that h−1[G2] contains the infinitely many odd numbers in C2 and the infinitely many even
numbers in C1. Since lN −h−1[G1] = h−1[G2], h

−1[G2] ∩ G1 is infinite, and h−1[G2] ∩G2

is infinite, by R32.3.2 h does not extend continuously to Y .

The last example also illustrates that there is no general relationship between ex-
tendibility and the ordering of compactifications: h (as in R32.3.4) extends to auto-
homeomorphisms of the larger Stone-Čech compactification (R32.1.4) and of the smaller
one-point compactification (R32.1.5).
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Wallman Compactifications

In this subsection the possibility of extending auto-homeomorphisms will be consid-
ered in the context of Wallman compactifications, i.e., compactifications generated from a
normal basis. Notation is as in [2]. The first result is more general than what’s needed for
the rest of the subsection.

Proposition R32.4.1 Let (X1, τ1) and (X2, τ2) be T3 1
2

spaces, let Z1 and Z2 be a

normal bases for (X1, τ1) and (X1, τ2) respectively, and let U1,U2 be the separated, totally
bounded uniformities corresponding to the compactification classes of (ω(Z1), ιZ1

) and
(ω(Z2), ιZ2

) respectively. Let f : X1 → X2 and assume f−1[Z] ∈ Z1 for every Z ∈ Z2.
Then f : (X1,U1) → (X2,U2) is uniformly continuous.

Proof: Let U ∈ U2. By R14.1.3 There are Z1, . . . , Zn in Z2 with ∩n
i=1Zi = ∅ and

∪n
i=1(X − Zi) × (X − Zi) ⊆ U . In general,

(f × f)−1[∪n
i=1(X − Zi) × (X − Zi)] = ∪n

i=1(X − f−1[Zi]) × (X − f−1 [Zi])

and so it is sufficient to show the latter is in U1. By hypothesis f−1[Zi] ∈ Z1 for each i
and ∩n

i=1f
−1 [Zi] = f−1[∩n

i=1Zi] = ∅. By R14.1.3 again ∪n
i=1(X −f−1 [Zi])× (X −f−1[Zi])

is in U1 as required.
Corollary R32.4.2 Let (X, τ ) be a T3 1

2
space and let σ : X → X be a permutation.

Let Z be a normal basis for (X, τ ) and let U be the separated, totally bounded uniformity
corresponding to the compactification class of (ω(Z), ιZ ). Assume σ[Z] ∈ Z for every
Z ∈ Z. Then σ−1 : (X,U) → (X,U) is uniformly continuous.

Proof: Because (σ−1)−1[Z] = σ[Z], this is immediate from R32.4.1.
Corollary R32.4.3 Let (X, τ ) be a T3 1

2
space and let h be a permutation of X. Let

Z be a normal basis for (X, τ ). Assume for every Z ∈ Z both h[Z] and h−1[Z] are in Z.
Then h is an auto-homeomorphism of (X, τ ) which extends to an auto-homeomorphism of
ω(Z).

Proof: Let U be the separated, totally bounded uniformity corresponding to the com-
pactification class of (ω(Z), ιZ ). With these assumptions the last two results show that
h : (X,U) → (X,U) is a unimorphism. Since τ (U) = τ , h is an auto-homeomorphism of
(X, τ ). That it extends follows from R32.1.2.

With the additional assumption that Z is closed under complementation, which im-
plies that (X, τ ) is zero-dimensional and holds for examples such as Zk, partial converses
can be obtained.

Lemma R32.4.4 Let S be a set, let {Aα : α ∈ ∆} be a non-empty collection of subsets
of S, and let B,C be subsets of S. Assume ∪{Aα × Aα : α ∈ ∆} ⊆ (B × B) ∪ (C × C).
Then for every α, either Aα ⊆ B or Aα ⊆ C .

Proof: Let α ∈ ∆ and suppose Aα 6⊆ B. Then there exists x such that x ∈ Aα − B.
Let y ∈ Aα. By hypothesis (x, y) ∈ (B ×B)∪ (C ×C). But x /∈ B implies (x, y) /∈ B ×B
and so (x, y) ∈ C × C . Thus y ∈ C and Aα ⊆ C .

Proposition R32.4.5 Let (X, τ ) be a T3 1
2

space and let f : X → X. Let Z be a nor-

mal basis for (X, τ ) and let U be the separated, totally bounded uniformity corresponding
to the compactification class of (ω(Z), ιZ ). Assume Z is closed under complementation
and f : (X,U) → (X,U) is uniformly continuous. Then f−1[Z] ∈ Z for every Z ∈ Z.
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Proof: Let Z ∈ Z. By hypothesis X − Z is also in Z and so by R14.1.3 U =
(Z × Z) ∪ (X − Z) × (X − Z)is in U . By the uniform continuity of f , (f × f)−1 [U ] ∈ U
and so by R14.1.3 again there exist Z1, . . . , Zn in Z with ∩n

i=1Zi = ∅ such that

∪n
i=1(X − Zi) × (X − Zi) ⊆ (f−1[Z]× f−1 [Z])∪ (X − f−1[Z]) × (X − f−1[Z]).

Clearly ∪{X − Zi : X − Zi ⊆ f−1 [Z]} ⊆ f−1[Z]. It is claimed that equality holds. Let
x ∈ f−1[Z]. Since ∩n

i=1Zi = ∅, there is j with x ∈ X − Zj . By the previous lemma
X − Zj is contained in one of f−1[Z],X − f−1 [Z] and since x /∈ X − f−1[Z] it must be
that X − Zj ⊆ f−1[Z]. Thus x is in the union and the claimed equality holds. Since Z is
closed under complementation and finite unions, f−1[Z] ∈ Z.

Corollary R32.4.6 Let (X, τ ) be a T3 1

2
space and let f : X → X be a permutation.

Let Z be a normal basis for (X, τ ) and let U be the separated, totally bounded uniformity
corresponding to the compactification class of (ω(Z), ιZ ). Assume Z is closed under com-
plementation and f−1 : (X,U) → (X,U) is uniformly continuous. Then for every Z ∈ Z,
f [Z] ∈ Z.

Proof: This follows from R32.4.5 applied to f−1 because (f−1)−1[Z] = f [Z].
Corollary R32.4.7 Let (X, τ ) be a T3 1

2
space and let h be a permutation of X. Let

Z be a normal basis for (X, τ ). Assume Z is closed under complementation and h extends
to an auto-homeomorphism of ω(Z). Then for every Z ∈ Z, both h[Z] and h−1[Z] are
in Z.

Proof: Let U be the separated, totally bounded uniformity corresponding to the com-
pactification class of (ω(Z), ιZ ). By R32.1.2 h : (X,U) → (X,U) is a unimorphism and so
the conclusion follows from R32.4.5 and R32.4.6.

Definition R32.4.8 Let (X, τ ) be a T3 1
2

space and let σ : X → X be a permutation.

Let Z be a normal basis for (X, τ ). Zimσ(Z) is defined to be {σ[Z] : Z ∈ Z}.
The previous definition will not be used here in its full generality. As in the next

result, the focus is on auto-homeomorphisms rather than arbitrary permutations.
Lemma R32.4.9 Let (X, τ ) be a T3 1

2
space and let Z be a normal basis for (X, τ ).

Let h : (X, τ ) → (X, τ ) be an auto-homeomorphism. Then Zimh(Z) is a normal basis for
(X, τ ).

Proof: Because h is an auto-homeomorphism, it follows easily that Zimh(Z) is a base
for the closed subsets of (X, τ ). Using only the continuity of h and its bijectivity, the other
three requirements for a normal basis in P3.1 transfer routinely from Z to Zimh(Z).

Proposition R32.4.10 Let (X, τ ) be a T3 1
2

space and let Z be a normal basis for

(X, τ ). Let h : (X, τ ) → (X, τ ) be an auto-homeomorphism. Let U ,V be the separated
totally bounded uniformities corresponding to the compactification classes of (ω(Z), ιZ )
and (ω(Zimh(Z)), ιZimh(Z)) respectively. Then V = Imh(U).

Proof: Because h is a permutation, h[X − S] = X − h[S] for any S ⊆ X and so

(∗) ∪t∈F (X − h[St]) × (X − h[St]) = (h× h)[∪t∈F (X − St) × (X − St)]

for any non-empty collection {St ⊆ X : t ∈ F}. Now let V ∈ V . By R14.1.3 and the
definition of Zimh(Z) there exist Z1, . . . Zn in Z with ∩n

i=1h[Zi] = ∅ such that
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∪n
i=1(X − h[Zi]) × (X − h[Zi]) ⊆ V . Note that ∩n

i=1Zi = ∅ and so by R14.1.3
U = ∪n

i=1(X − Zi) × (X − Zi) is in U . By (*) (h × h)[U ] ⊆ V , i.e., V ∈ Imh(U). Now
let W ∈ Imh(U). By R14.1.3 there is a basic entourage in U determined by C1, . . . , Cj

in Z with ∩j
i=1Ci = ∅ such that (h × h)[∪j

i=1(X − Ci) × (X − Ci)] ⊆ W . Because

h is one-to-one, ∩j
i=1h[Ci] = ∅. Each h[Ci] is in Zimh(Z). By R14.1.3 again W1 =

∪j
i=1(X − h[Ci]) × (X − h[Ci] is in V . By (*) W1 ⊆W and so W ∈ V .

This proposition makes available various results from the second subsection, e.g., the
following.

Corollary R32.4.11 Let (X, τ ) be a T3 1
2

space and let Z be a normal basis for

(X, τ ). Let h : (X, τ ) → (X, τ ) be an auto-homeomorphism. Let U ,V be the separated
totally bounded uniformities corresponding to the compactification classes of (ω(Z), ιZ )
and (ω(Zimh(Z)), ιZimh(Z)) respectively. Then h : (X,U) → (X,V) is a unimorphism.

Proof: This is immediate from R32.4.10 and R32.2.2iv.
The following inductive definition, which implicitly uses R32.4.9, leads to more con-

nections with image uniformities.
Definition R32.4.12 Let (X, τ ) be a T3 1

2
space and let h : (X, τ ) → (X, τ ) be an

auto-homeomorphism. Let Z be a normal basis for (X, τ ). Zim1
h(Z) is defined to be

Zimh(Z). For n ∈ lN , Zimn+1
h (Z) = Zimh(Zimn

h(Z).
Lemma R32.4.13 Let (X, τ ) be a T3 1

2
space and let h : (X, τ ) → (X, τ ) be an

auto-homeomorphism. Let Z be a normal basis for (X, τ ). Then
i) For every n ∈ lN , Zimn

h(Z) is a normal basis for (X, τ ).
ii) For every n ∈ lN , Zimn

h(Z) = {hn[Z] : Z ∈ Z}.
Proof: Both follow by induction. Part i) holds for n = 1 by R32.4.9, which, with the

induction hypothesis, also implies Zimn+1
h (Z) is a normal basis. Part ii) holds when n = 1

by definition. The induction step follows easily from h[hn[Z]] = hn+1[Z].
Proposition R32.4.14 Let n ∈ lN . Let (X, τ ) be a T3 1

2
space and let Z be a normal

basis for (X, τ ). Let h : (X, τ ) → (X, τ ) be an auto-homeomorphism. Let U ,Vn be the
separated totally bounded uniformities corresponding to the compactification classes of
(ω(Z), ιZ ) and (ω(Zimn

h(Z)), ιZimn

h
(Z)) respectively. Then Vn = Imn

h(U).
Proof: By induction. When n = 1, this is R32.4.10. If true for n, by R32.4.10 again

Vn+1 = Imh(Vn) = Imh(Imn
h(U) = Imn+1

h (U).
Proposition R32.4.15 Let n ∈ lN . Let (X, τ ) be a T3 1

2
space and let Z be a

normal basis for (X, τ ). Let h : (X, τ ) → (X, τ ) be an auto-homeomorphism. As-
sume, for every Z ∈ Z, h−1[Z] is in Z. Let Vn,Vn+1 be the separated totally bounded
uniformities corresponding to the compactification classes of (ω(Zimn

h(Z)), ιZimn

h
(Z)) and

(ω(Zimn+1
h (Z)), ιZimn+1

h
(Z)) respectively. Then h : (X,Vn) → (X,Vn+1) is a unimorphism.

Proof: Let U be the separated totally bounded uniformity corresponding to the com-
pactification class of (ω(Z), ιZ). By R34.4.1 h : (X,U) → (X,U) is uniformly continuous.
The result now follows from R32.2.9iv and R32.4.14.

Lemma R32.4.16 Let (X, τ ) be a T3 1
2

space and let h : (X, τ ) → (X, τ ) be an

auto-homeomorphism. Let Z be a normal basis for (X, τ ). Assume h−1[Z] ∈ Z for every
Z ∈ Z. Then

i) Z ⊆ Zimh(Z).
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ii) Zimn
h(Z) ⊆ Zimn+1

h (Z) for every n ∈ lN .
iii) ∪∞

n=1Zimn
h(Z) is a normal basis for (X, τ ).

Proof: For i) let Z ∈ Z. By hypothesis h−1[Z] is in Z and by definition Z =
h[h−1[Z]] ∈ Zimh(Z). For ii), by R32.4.13ii a typical element of Zimn

h(Z) is hn[Z] for
some Z ∈ Z. Again h−1[Z] is in Z and so hn+1[h−1[Z]] = hn[Z] is in Zimn

h(Z). Part iii)
follows from ii) and R9.2.1.

Definition R32.4.17 Let (X, τ ) be a T3 1

2
space and let h : (X, τ ) → (X, τ ) be an

auto-homeomorphism. Let Z be a normal basis for (X, τ ). Assume h−1[Z] ∈ Z for every
Z ∈ Z. Zh(Z) is defined to be ∪∞

n=1Zimn
h(Z).

Proposition R32.4.18 Let (X, τ ) be a T3 1

2
space and let h : (X, τ ) → (X, τ ) be an

auto-homeomorphism. Let Z be a normal basis for (X, τ ) with h−1[Z] ∈ Z for every Z ∈ Z.
Let U be the separated totally bounded uniformity corresponding to the compactification
class of (ω(Z), ιZ ). Then Vh(U) is the separated totally bounded uniformity corresponding
to the class of (ω(Zh(Z)), ιZh(Z)).

Proof: Let V be in the uniformity corresponding to the class of (ω(Zh(Z)), ιZh(Z)).

By R14.1.3 There are Z1, . . . , Zj in Zh(Z) such that ∪j
i=1(X − Zi) × (X − Zi) ⊆ V and

∩j
i=1Zi = ∅. Because the sequence of normal bases is increasing (R32.4.16ii), there is m

such that Z1, . . . , Zj are all in Zimm
h (Z) and so by R32.4.14 and R14.1.3 again V is in

Imm
h (U), which is contained in Vh(U) by R32.2.15i. Conversely let W be in Vh(U). By

R32.2.15i W is in Imn
h(U) for some n. Because R32.4.14 holds and Zimn

h(Z) ⊆ Zh(Z), by
R14.1.3 W is in the uniformity corresponding to the class of (ω(Zh(Z)), ιZh(Z)).

Corollary R32.4.19 Let (X, τ ) be a T3 1
2

space and let h : (X, τ ) → (X, τ ) be an

auto-homeomorphism. Let Z be a normal basis for (X, τ ) with h−1[Z] ∈ Z for every
Z ∈ Z. Then h extends to an auto-homeomorphism of ω(Zh(Z)).

Proof: Let U be the separated totally bounded uniformity corresponding to the com-
pactification class of (ω(Z), ιZ). By R32.4.1 h : (X,U) → (X,U) is uniformly continuous.
By R32.2.17 h extends to an auto-homeomorphism of any compactification in the class
corresponding to Vh(U) and so by R32.4.18 the conclusion holds.

Proposition R32.4.20 Let (X, τ ) be a T3 1

2
space and let h : (X, τ ) → (X, τ ) be an

auto-homeomorphism. Let Z be a normal basis for (X, τ ) with h[Z] and h−1[Z] in Z for
every Z ∈ Z. Then Zimn

h(Z) = Z for every n ∈ lN and Zh(Z) = Z.

Proof: By induction. By definition of Zimh(Z) = Zim1
h(Z), h[Z] ∈ Z for every Z ∈ Z

implies Zim1
h(Z) ⊆ Z. R32.4.16 shows the opposite containment. If Zimn

h(Z) = Z, the
first case shows Zimn+1

h (Z) = Z. The second claim now follows from R32.4.17.

By R32.4.3 the hypotheses of R32.4.20 imply h extends to an auto-homeomorphism
of ω(Z). The weaker hypothesis of R32.4.19 implies only that h extends continuously to
ω(Z). The following corollary is an application of R32.2.12 to the context of Wallman
compactifications.

Corollary R32.4.21 Let (X, τ ) be a T3 1
2

space and let h : (X, τ ) → (X, τ ) be an

auto-homeomorphism. Let Z be a normal basis for (X, τ ) with h−1[Z] ∈ Z for every
Z ∈ Z. Assume h does not extend to an auto-homeomorphism of ω(Z). Then h does not
extend to an auto-homeomorphism of ω(Zimn

h(Z)) for every n ∈ lN .

Proof: Let U be the separated totally bounded uniformity corresponding to the com-
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pactification class of (ω(Z), ιZ ). R32.4.1 and R7.1.3 imply h extends continuously to
ω(Z). By R32.4.14 (ω(Zimn

h(Z)), ιZimn

h
(Z)) is in the compactification class corresponding

to Imn
h(U). The conclusion is now immediate from R32.2.12.

Results for lNk and Rk

Notation, definitions, and results from [7] and [4] will be reviewed first. For n, k, i ∈
lN with k ≥ 2, C i

n(k) denotes the equivalence class of i mod kn. For S ⊆ lN and ∆ ⊆
{1, . . . kn}, S is associated with ∆ provided j ∈ ∆ implies S ∩ Cj

n(k) is finite and j /∈ ∆
implies (X − S) ∩ Cj

n(k) is finite. Z(n, k), which is defined as the collection of all subsets
of lN associated with some ∆ ⊆ {1, . . . , kn}, is a normal basis for lN with the discrete
topology, as is Zk = ∪∞

n=1Z(n, k). Z(n, k) is closed under complementation for all n and
so Zk is also. lNk denotes the compactification ω(Zk) with the embedding that takes a
positive integer to its point-filter. Because the underlying topological space is discrete, its
auto-homeomorphisms are simply the permutations.

Lemma R32.5.1 Let k ∈ lN with k ≥ 2 and let σ be a permutation of lN . Assume
that, for some n,m in lN , σ[C i

n(k)] ∈ Z(m,k) for every i in {1, . . . , kn}. Let Z ∈ Z(n, k).
Then σ[Z] ∈ Z(m,k).

Proof: Finite subsets of lN are in Z(m,k), being associated with {1, . . . , km}. By
definition Z ∈ Z(n, k) implies that, for every i ∈ {1, . . . , kn}, either Ai = Z ∩ C i

n(k) is
finite or Bi = (lN −Z) ∩ C i

n(k) is finite. Note that C i
n(k) = Ai ∪ Bi and Ai ∩ Bi = ∅ so

that Ai = C i
n(k) ∩ (lN −Bi). It will be shown that σ[Ai] is in Z(m,k) for all i. When Ai

is finite, σ[Ai] is in Z(m,k). When Ai is not finite, σ[Bi] ∈ Z(m,k), as is its complement.
By hypothesis σ[C i

n(k)] is in Z(m,k). Now σ[Ai] = σ[C i
n(k)] ∩ ( lN −σ[Bi]) because σ is

a permutation. Since Z(m,k) is closed under finite intersections, σ[Ai], is also in Z(m,k).
Since Z = ∪kn

i=1Ai and a normal basis is closed under finite unions, σ[Z] = ∪kn

i=1σ[Ai] is in
Z(m,k).

Corollary R32.5.2 Let k ∈ lN with k ≥ 2 and let σ be a permutation of lN . Then
σ[Z] ∈ Zk for every Z ∈ Zk if and only if σ[Cj

n(k)] ∈ Zk for every n ∈ lN and j in
{1, . . . , kn}.

Proof: The condition is necessary because each Cj
n(k) is in Z(n, k), being associated

with {1, . . . , kn} − {j}. Now assume σ[Cj
n(k)] ∈ Zk for every n ∈ lN and j in {1, . . . , kn}

and let Z ∈ Zk. Pick n ∈ lN with Z ∈ Z(n, k). Z(t, k) ⊆ Z(t + 1, k) for all t ∈ lN and
so there is m ∈ lN such that σ[Cj

n] ∈ Z(m,k) for every j ∈ {1, . . . , kn}. By the previous
lemma, σ[Z] ∈ Z(m,k) ⊆ Zk.

Corollary R32.5.3 Let k ∈ lN with k ≥ 2 and let σ be a permutation of lN . Then
σ extends to an auto-homeomorphism of lNk if and only if σ[Cj

n(k)] and σ−1[Cj
n(k)] are

in Zk for every n ∈ lN and j in {1, . . . , kn}.
Proof: If σ extends to an auto-homeomorphism of lNk , the condition follows from

R32.4.7 and R32.5.2. The converse follows from R32.5.2 applied to σ−1 as well as σ and
R32.4.3.

The next result uses the notion of order of an element in the group of permutations
with composition as operation.

Corollary R32.5.4 Let k ∈ lN with k ≥ 2 and let σ be a permutation of lN of finite
order. Then σ extends to an auto-homeomorphism of lNk if and only if σ[Cj

n(k)] ∈ Zk for
every n ∈ lN and j in {1, . . . , kn}.
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Proof: The condition is necessary for any permutation by by R32.5.3. For sufficiency,
if σ has order 1, σ is the identity, which extends to the identity. If σ has order m ≥ 2,
σ−1 = σm−1. A routine induction shows that σm−1[Cj

n(k)] ∈ Zk for every n ∈ lN and j in
{1, . . . , kn} and so σ extends by the previous corollary.

On this site Rk with k ≥ 2 has usually denoted the compactification (Rk , fk) of
(Z , τk), where Rk is the remnant space obtained by removing the point-filters (images of
elements in lN ) from lNk and fk(z) is the non-point filter associated with {xn}, where
xn ≡ z mod kn and xn ∈ {1, 2, . . . , kn}. With Dz

n(k) defined as the equivalence class of
z mod kn in Z , Bk = {Dz

n(k) : n ∈ lN and z ∈ Z } is a clopen basis for τk. In [10]
Dk, the set of all unions of finite subcollectios from Bk, is shown to be a normal basis for
(Z , τk). Dk is closed under complementation and the associated Wallman compactification
(ω(Dk), δk) is equivalent to (Rk , fk) (R27.1.10).

Lemma R32.5.5 Let k ∈ lN with k ≥ 2 and let h : Z → Z . Then h[Z] ∈ Dk for
every Z ∈ Dk if and only if h[Dz

n(k)] ∈ Dk for every n ∈ lN and z ∈ Z .

Proof: The condition is necessary because Bk ⊆ Dk. Conversely, assume h[Dz
n(k)]

is in Dk for every n ∈ lN and z ∈ Z , i.e., h[B] ∈ Dk for every B ∈ Bk. Let Z ∈ Dk.
By definition of Dk, Z is a finite union of elements of Bk and so h[Z] is a finite union of
elements of the normal basis Dk, which is closed under finite unions.

Proposition R32.5.6 Let k ∈ lN with k ≥ 2 and let h be a permutation of Z . Then
h extends (relative to fk) to an auto-homeomorphism of Rk if and only if h[Dz

n(k)] and
h−1[Dz

n(k)] are in Dk for every n ∈ lN and z ∈ Z .

Proof: By R32.4.3 and R32.4.7 h extends to an auto-homeomorphism of ω(Dk) if and
only if h[Z] and h−1[Z] are in Dk for every Z ∈ Dk. By R32.1.3, since (ω(Dk), δk) is
equivalent to (Rk , fk), ω(Dk) can be replaced in that statement with Rk . The conclusion
follows by applying applying the previous lemma to both h and h−1.

R27.4.4 shows that (Rk , gk) is a T2 compactification of (lN , σk), where gk is fk

restricted to lN and σk is the relative topology induced on lN from τk. The collection
{Cj

n(k) : n, j ∈ lN } is a clopen basis for σk.

This compactification can be represented as a Wallman compactification as follows.
Let Ck be {D ∩ lN : D ∈ Dk}. (Note that for n, j ∈ lN , Dj

n(k) ∩ lN = Cj
n(k).) R27.4.14

shows that Ck is a normal basis for ( lN , σk) and the corresponding Wallman compactifi-
cation (ω(Ck), εk) is equivalent to (Rk , gk). Ck is also closed under complementation.

Lemma R32.5.7 Let k ∈ lN with k ≥ 2 and let h : lN → lN . Then h[Z] ∈ Ck for
every Z ∈ Ck if and only if h[Cj

n(k)] ∈ Ck for every n, j ∈ lN .

Proof: It is noted in [10] that Ck is the set of unions of finite collections of
{Cj

n(k) : n, j ∈ lN }. The argument follows the same pattern as the proof of R32.5.5.

Proposition R32.5.8 Let k ∈ lN with k ≥ 2 and let h be a permutation of lN . Then
h extends (relative to gk) to an auto-homeomorphism of Rk if and only if h[Cj

n(k)] and
h−1[Cj

n(k)] are in Ck for every n, j ∈ lN .

Proof: Similar to the proof of R32.5.6.

By R27.Add.3 (Rk , gk) ≤ lN k under the generalized ordering of compactifications
described in [8]. The following corollary points out a case in which a homeomorphism which
extends to an auto-homeomorphism of the smaller compactification must also extend for
the larger, a relationship which does not hold in general as noted in the comment at the
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end of R32.3.
Corollary R32.5.9 Let k ∈ lNwith k ≥ 2 and let h be a permutation of lN . Assume

h extends (relative to gk) to an auto-homeomorphism of Rk . Then h extends to an
auto-homeomorphism of lNk .

Proof: This follows from R32.5.8 and R32.5.3 because Ck ⊆ Zk.
The following example shows that the converse of R32.5.9 is false.
Example R32.5.10 Let k ∈ lN with k ≥ 2. Let h : lN → lN be defined by

h(1) = 2, h(2) = 1 and h(n) = n for n ≥ 3. Clearly h is a permutation of lN . For n ∈ lN

and j ∈ {1, . . . , kn}, h[Cj
n(k)] = (Cj

n(k) − {1, 2}) ∪ S, where S ⊆ {1, 2}. Then h[Cj
n(k)] is

associated with {1, . . . , kn} − {j} and so is in Z(n, k) ⊆ Zk. Because h has order 2, by
R32.5.4 h extends to an auto-homeomorphism of lNk . Next note that if 2 ∈ Cj

n(k), then
infinitely many even integers must be in Cj

n(k), because 2 + 2mkn ≡ 2 mod kn for all m
in lN . In particular, with k = 2, h[C1

1(2)] = {2} ∪ (C1
1 (2) − {1}) contains no even number

except 2. Since an element of C2 must be a finite union of classes from {Cj
n(2) : n, j ∈ lN },

h[C1
1(2)] /∈ C2. By R32.5.8 h does not extend to an automorphism of R2 relative to gk.

Albert J. Klein 2022
http://www.susanjkleinart.com/compactification/
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This addition fills a gap in the above by showing there is an example of a compactifica-
tion and an auto-homeomorphism of the underlying T3 1

2
space that extends to a continuous

map which is not a homeomorphism of the compactification.
By R32.1.2iii and R7.1.3 the existence of such an auto-homeomorphism is equivalent

to the existence of a separated, totally bounded uniform space (X,V) and a uniformly con-
tinuous map f : (X,V) → (X,V) such that f : (X, τ (V)) → (X, τ (V) is a homeomorphism
but f is not a unimorphism from (X,V) to (X,V), i.e., f−1 is not uniformly continuous
from (X,V) to (X,V).

Throughout this added subsection X will denote the interval of real numbers (1,∞)
and U the uniformity on X generated by the absolute value metric, i.e., U has basis
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{Vε : ε > 0} where Vε = {(x, y) ∈ X × X : |x − y| < ε}. The maps f : X → X and
g : X → X will be defined by f(x) =

√
x and g(x) = x2.

Lemma R32.Add.1 The following hold.

i) f and g are bijections and g = f−1.
ii) f : (X, τ (U)) → (X, τ (U)) is a homeomorphism.
iii) f : (X,U) → (X,U) is uniformly continuous.
iv) g is not uniformly continuous from (X,U) to (X,U).

Proof: It is easy to check that f ◦ g = g ◦ f = idX and so i) holds. From calculus both
f and g are continuous. Since τ (U) is the usual topology on X, ii) holds. By the Mean
Value Theorem for, x, y ∈ X, |f(x) − f(y)| ≤ 1

2 |x− y| because |f ′(t)| ≤ 1
2 for all t in X.

The inequality implies ε− δ uniform continuity, which is equivalent to uniform continuity
from (X,U) to (X,U). Thus iii) holds. Lastly let ε = 1 and let δ > 0. Pick n ∈ lN such
that n > 1/δ. Then (n + δ/2)2 − n2 > nδ > 1 but (n + δ/2) − n < δ and so g is not
uniformly continuous.

Of course, (X,U) is not totally bounded and so the lemma does not provide the desired
example. However the uniformiy generated by U-proximal covers does.

Recall from R8.Add.3 that a U-proximal cover of X is a finite collection {A1, . . . , An}
of subsets of X for which there exist sets B1, . . . , Bn and U ∈ U such that X = ∪n

i=1Bi and
U [Bi] ⊆ Ai for 1 ≤ i ≤ n. The uniformity generated by U-proximal covers is V , defined as
the set {V ⊆ X ×X : there is a proximal cover {A1, . . . , An} with ∪n

i=1Ai ×Ai ⊆ V }. By
R8.Add.5 V is a totally bounded uniformity contained in U such that τ (V) = τ (U).

The next lemma is known but is included here for convenience of reference.

Lemma R32.Add.2 Let (A,U1) and (B,U2) be uniform spaces and assume
h : (A,U1) → (B,U2) is uniformly continuous. Let Vi be the uniformity generated by
Ui-proximal covers. Then h : (A,V1) → (B,V2) is uniformly continuous.

Proof: Let V ∈ V2. There is a finite collection {A1, . . . , An} of subsets of B, sets
B1, . . . , Bn, and U ∈ U2 with B = ∪n

i=1Bi and U [Bi] ⊆ Ai for 1 ≤ i ≤ n such that
∪n

i=1Ai × Ai ⊆ V . Let W = (h × h)−1[V ]. By the hypothesis of uniform continu-
ity and the fact that V2 ⊆ U2, W ∈ U1. It is easy to check that A = ∪n

i=1h
−1[Bi],

∪n
i=1h

−1
i [Ai]× h−1[Ai] ⊆ (h× h)−1[V ], and, for ≤ i ≤ n, W [h−1[Bi]] ⊆ h−1[Ai]. It follows

that {h−1[A1], . . . , h
−1[An]} is a U1-proximal cover of A. Thus (h× h)−1[V ] = W is in V1

as required for the conclusion.

Corollary R32.Add.3 f : (X,V) → (X,V) is uniformly continuous.

Proof: This follows from R32.Add.1iii and the lemma.

To produce the desired example, it still needs to be verified that g is not uniformly
continuous from (X,V) to (X,V).

First an element of V will be identified. Let B1 = (1, 2] ∪ (∪∞
n=1[2n+ 1, 2n + 2]) and

B2 = (1,∞) − B1 = ∪∞
n=1(2n, 2n + 1). By definition {V0.1[B1], V0.1[B2]} is a U-proximal

cover of X and so W = (V0.1[B1] × V0.1[B1]) ∪ (V0.1[B2] × V0.1[B2]) is in V .

Lemma R32.Add.4 Let j ∈ lN and x, y ∈ X.

i) If 2j + 0.1 < x < 2j + 0.9, then x ∈ V0.1[B2] and x /∈ V0.1[B1].
ii) If 2j + 1.1 < y < 2j + 1.9, then y ∈ V0.1[B1] and y /∈ V0.1[B2].

Proof: It is easy to check that V0.1[B1] = (1, 2.1) ∪ (∪∞
n=1(2n + 0.9, 2n + 2.1)) and

V0.1[B2] = ∪∞
n=1(2n−0.1, 2n+1.1). Let 2j+0.1 < x < 2j+0.9 so that clearly x ∈ V0.1[B2].
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Since j ≥ 1, 2.1 < x so that x /∈ (1, 2.1). For n ≤ j − 1, 2n + 2.1 ≤ 2(j − 1) + 2.1 =
2j + 0.1 < x so that x /∈ (2n + 0.9, 2n+ 2.1). For n ≥ j, x < 2j + 0.9 ≤ 2n+ 0.9 and so
x /∈ (2n+0.9, 2n+2.1). Thus x /∈ V0.1[B1] and i) holds. Now assume 2j+1.1 < y < 2j+1.9.
Then y ∈ (2j+0.9, 2j+2.1) ⊆ V0.1[B1]. Next let n ∈ lN . If n ≤ j, 2n+1.1 ≤ 2j+1.1 < y
and so y /∈ (2n− 0.1, 2n+ 1.1). If n > j, y < 2j + 1.9 = 2(j + 1) − 0.1 ≤ 2n− 0.1 so that
y /∈ (2n− 0.1, 2n+ 1.1). Thus y /∈ V0.1[B2] and ii) holds.

Lemma R32.Add.5 g is not uniformly continuous from (X,V) to (X,V).
Proof: It will be shown that (g×g)−1[W ] is not in U . This is sufficient because V ⊆ U

by R8.Add.5iii. Let δ > 0. Since limn→∞
1√

2n+0.5+
√

2n+1.5
= 0, there is N ∈ lN such that

1√
2N + 0.5 +

√
2N + 1.5

< δ.

Let s =
√

2N + 0.5 and t =
√

2N + 1.5. Then t2 − s2 = 1 and t − s = 1
t+s

< δ so that

(t, s) ∈ Vδ. Also 2N + 0.1 < s2 < 2N + 0.9 so that s2 /∈ V0.1[B1] by R32.Add.4i. Similarly,
2N + 1.1 < t2 < 2N + 1.9 so that t2 /∈ V0.1[B2] by R32.Add.4ii. By the definition of W ,
(g × g)(t, s) = (t2, s2) /∈ W , i.e., Vδ 6⊆ (g × g)−1[W ]. Thus the claim is verified and the
conclusion follows.

The next two corollaries merely summarize the example.
Corollary R32.Add.6 Let X = (1,∞) have the usual topology and let U be the

uniformity for X generated by the absolute value metric. Let V be the uniformity for X
generated by the U-proximal covers and let f : X → X by f(x) =

√
x. Then

i) f : (X, τ (V)) → (X, τ (V)) is a homeomorphism.
ii) f : (X,V) → (X,V) is uniformly continuous.
iii) f is not a unimorphism from (X,V) to (X,V).

Proof: Part i) follows from R32.Add.1ii and R8.Add.5iv. Part ii) repeats R32.Add.3.
Part iii) follows from R32.Add.1i and R32.Add.5.

Corollary R32.Add.7 Let X = (1,∞) have the usual topology and let U be the
uniformity for X generated by the absolute value metric. Let V be the uniformity for
X generated by the U-proximal covers and let (Y, h) be in the compactification class
corresponding to V . Let f : X → X by f(x) =

√
x. Then f is an auto-homeomorphism of

(X, τ (V)) which extends continuously to Y but the extension is not a homeomorphism.
Proof: The first assertion follows from the definition of auto-homeomorphism and

R32.Add.6i. By R32.Add.6ii and R7.1.3 f extends continuously to Y . The extension is
not a homeomorphism by R32.Add.6iii and R32.1.2.

The example also allows the following simple observations: Let (Y, h) be a T2 com-
pactification in the class corresponding to V . By R32.1.4 (Y, h) is not the Stone-Čech
compactification and by R32.3.1 it is not a finite point compactification.

Finally, the example provides additional instances of non-equivalent compactifications
with homeomorphic compact spaces. The result will be presented generally because it
applies to any map with the properties of f . The first two lemmas may be considered
obvious but haven’t been explicitly recorded here.

Lemma R32.Add.8 Let (S,S) and (R,R) be separated, totally bounded uniform
spaces. Let (A,α) and (B, β) be in the compactification classes corresponding to S, R
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respectively. Let ψ : S → R. Assume Ψ : A → B is continuous with Ψ ◦ α = β ◦ ψ. Then
ψ : (S,S) → (R,R) is uniformly continuous.

Proof: By R1.6a α and β are uniform embeddings of (S,S) and (R,R) respectively,
i.e., they are unimorphisms onto their images with the subspace uniformities from the
unique uniformities for A,B respectively. Since A is compact, Ψ is uniformly continuous.
By hypothesis ψ = β−1 ◦Ψ|α[X] ◦ α. As the composition of uniformly continuous maps, ψ
is uniformly continuous.

Lemma R32.Add.9 Let (S,S) and (R,R) be separated, totally bounded uniform
spaces. Let (A,α) and (B, β) be in the compactification classes corresponding to S, R
respectively. Let ψ : S → R. If ψ : (S,S) → (R,R) is a unimorphism, then ψ extends to
a homeomorphism from A onto B. If ψ is onto and ψ extends to a homeomorphism from
A onto B, then ψ : (S,S) → (R,R) is a unimorphism.

Proof: First assume ψ is a unimorphim. By R7.1.3 ψ and ψ−1 extend to continuous
maps F and G, i.e., F ◦α = β◦ψ and G◦β = α◦ψ−1. It follows that G◦F ◦α = α, i.e., the
continuous G ◦ F agrees with idA, the identity map on A, on the dense subset α[S]. Since
A is T2, G ◦F = idA. Similarly, F ◦G = idB and so G = F−1, i.e., F is a homeomorphism
onto B. Now assume ψ is onto and extends to a homeomorphism F from A to B. By
R32.Add.8 ψ : (S,S) → (R,R) is a uniformly continuous. Because F ◦ α = β ◦ ψ and F
and α are one-to-one, ψ must be one-to-one. Since ψ is onto by hypothesis, it follows that
α ◦ ψ−1 = F−1 ◦ β, i.e., F−1 is a continuous extension of ψ−1. By R32.Add.8 again ψ−1

is also uniformly continuous, i.e., ψ : (S,S) → (R,R) is a unimorphism.
Comment: Without the assumption that ψ is onto, the second part of the lemma

fails. Let (R,R) be separated, totally bounded uniform space. Assume S is a τ (R)-dense
proper subset of R and let S be the subspace uniformity from R on S. Let ψ : S → R
be the inclusion map, which is not onto so that ψ cannot be a unimorphism. Now let
(B, β) be in the compactification class corresponding to R. By R27.4.1 (B, β|S) is in
the compactification class corresponding to S. ψ extends to the identity map on B, a
homeomorphism.

Proposition R32.Add.10 Let (Z,W) be a separated, totally bounded uniform space
and let σ : (Z, τ (W)) → (Z, τ (W)) be an auto-homeomorphism. Assume σ is uniformly
continuous from (Z,W) to (Z,W) but not a unimorphism. Let (Y, h) be in the compactifi-
cation class corresponding to W and (Y1, h1) be in the compactification class corresponding
to Imσ(W). Then

i) (Y, h) ≤ (Y1, h1) but (Y, h) is not equivalent to (Y1, h1).
ii) Y is homeomorphic to Y1.

Proof: By R32.2.3 W ⊆ Imσ(W). By R32.2.4 and R32.1.2 W 6= Imσ(W). Part i) now
follows from R1.5. By R32.2.2iv σ : (Z,W) → (Z, Imσ(W)) is a unimorphism and so by
R32.Add.9 σ extends to a homeomorphism from Y to Y1. Thus part ii) holds.

Continue with the hypotheses of R32.Add.10. Let (Yn, hn) be in the compactification
class corresponding to Imn

σ(W). By using R32.2.9, R32.2.11, and similar arguments, it can
be shown that (Yn, hn) ≤ (Yn+1, hn+1), (Yn, hn) is not equivalent to (Yn+1, hn+1), and Yn

is homeomorphic to Yn+1 for every n. R32.2.9v and R32.Add.9 (or a routine induction)
show that Y is homeomorphic to Yn for every n.
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Added Reference

11. This Website, R8: Lattice and Semilattice Properties
Added 2024

This added subsubsection notes that analogs of various results can be derived for
lN∞ , (R∞, f∞), and (R∞, g∞). The notation to be used was described in R32.5.

The first lemma is slight extension of R32.5.1.
Lemma R32.Add.11 Let k, j ∈ lN with both k and j greater than or equal 2. Let σ

be a permutation of lN . Assume that, for some n,m in lN , σ[C i
n(k)] ∈ Z(m, j) for every

i in {1, . . . , kn}. Let Z ∈ Z(n, k). Then σ[Z] ∈ Z(m, j).
Proof: The proof of R32.5.1 works with any fixed j ≥ 2 for the images, not just j = k.

To make that observation clear, the adjusted proof follows. Finite subsets of lN are in
Z(m, j), being associated with {1, . . . , jm}. By definition Z ∈ Z(n, k) implies that, for
every i ∈ {1, . . . , kn}, either Ai = Z ∩ C i

n(k) is finite or Bi = (lN −Z) ∩ C i
n(k) is finite.

Note that C i
n(k) = Ai ∪ Bi and Ai ∩ Bi = ∅ so that Ai = C i

n(k) ∩ (lN − Bi). It will be
shown that σ[Ai] is in Z(m, j) for all i. When Ai is finite, σ[Ai] is in Z(m, j). When Ai

is not finite, σ[Bi] ∈ Z(m, j), as is its complement. By hypothesis σ[C i
n(k)] is in Z(m, j).

Now σ[Ai] = σ[C i
n(k)] ∩ ( lN −σ[Bi]) because σ is a permutation. Since Z(m, j) is closed

under finite intersections, σ[Ai], is also in Z(m, j). Since Z = ∪kn

i=1Ai and a normal basis
is closed under finite unions, σ[Z] = ∪kn

i=1σ[Ai] is in Z(m, j).
As in [7] lN∞ denotes the Wallman compactification generated by Z∞, a normal basis

for lN with the discrete topology. Z∞ is ∪∞
k=2Zk, which is closed under complementation.

The following is similar to R32.5.3.
Proposition R32.Add.12 Let σ be a permutation of lN . Then σ extends to an

auto-homeomorphism of lN∞ if and only if σ[Cj
n(k)] and σ−1[Cj

n(k)] are both in Z∞ for
every n, j, k ∈ lN with k ≥ 2.

Proof: First assume σ extends. By R32.4.7 σ[Z] and σ−1[Z] are in Z∞ for every
Z ∈ Z∞. The condition follows because for every n, j, k ∈ lN with k ≥ 2, Cj

n(k) ∈ Z∞.
Conversely assume σ[Cj

n(k)] and σ−1[Cj
n(k)] are both in Z∞ for every n, j, k ∈ lN with

k ≥ 2 and let Z ∈ Z∞. There is l ∈ lN with l ≥ 2 such that Z ∈ Zl. By definition
Z ∈ Z(p, l) for some p ∈ lN . For every j in {1, . . . , lp}, σ[Cj

p(l)] ∈ Z∞ by assumption.
Because {Zk : k ≥ 2} is a directed set under containment, there is r ∈ lN such that for
every j in {1, . . . , lp}, σ[Cj

p(l)] ∈ Zr. Because Zr = ∪∞
i=2Z(i, r) and Z(i, r) ⊆ Z(i+1, r) for

all i, there is q ≥ 2 such that for every j in {1, . . . , lp}, σ[Cj
p(l)] ∈ Z(q, r). By R32.Add.11

σ[Z] ∈ Z(q, r) ⊆ Zr ⊆ Z∞. The same argument for the permutation σ−1 shows that
σ−1[Z] ∈ Z∞ for every Z ∈ Z∞. It now follows from R32.4.3 that σ extends to an
auto-homeomorphism of lN∞ .

Recall from [10] that D∞ = ∪∞
k=2Dk is a normal basis for (Z , τ∞), where τ∞ =

∨∞
k=2τk. R27.3.5 shows that (ω(D∞), ιD∞

) is equivalent to (R∞, f∞). D∞ is closed under
complementation because each Dk is.

Lemma R32.Add.13 Let h be a permutation of Z . Then h extends (relative to the
embedding ιD∞

) to a homeomorphism of ω(D∞) if and only if h[Dz
n(k)] and h−1[Dz

n(k)]
are both in D∞ for every z ∈ Z , n, k ∈ lN with k ≥ 2.

Proof: If h extends, the condition follows from R34.4.7 since Dz
n(k) is in D∞ for every

z ∈ Z , n, k ∈ lNwith k ≥ 2. For the converse assume the condition holds and let D ∈ D∞.
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By definition of D∞ there is k ∈ lN with k ≥ 2 such that D ∈ Dk. By definition of Dk,
D is a finite union of equivalence classes, i.e., there exist t ∈ lN , z(1) . . . , z(t) ∈ Z , and

n(1), . . . , n(t) ∈ lN such that D = ∪t
i=1D

z(i)
n(i)(k). Since Dk is closed under finite unions,

h[D] = ∪t
i=1h[D

z(i)
n(i)(k)] and h−1[D] = ∪t

i=1h
−1[D

z(i)
n(i)(k)] are both in Dk ⊆ D∞. It follows

from R32.4.3 that h extends as required.

The following is similar to R32.5.6.

Proposition R32.Add.14 Let h be a permutation of Z . Then h extends (relative
to the embedding f∞) to a homeomorphism of R∞ if and only if h[Dz

n(k)] and h−1[Dz
n(k)]

are both in D∞ for every z ∈ Z , n, k ∈ lN with k ≥ 2.

Proof: This follows from the previous lemma, R32.1.3, and R27.3.5.

Recall from [10] that C∞ = ∪∞
k=2Ck is a normal basis for (lN , σ∞), where σ∞ is the

relative topology on lN from τ∞. R27.4.15 shows that (ω(C∞), ιC∞
) is equivalent to

(R∞, g∞), where g∞ is the restriction of f∞ to lN . C∞ is closed under complementation
because each Ck is.

Lemma R32.Add.15 Let h be a permutation of Z . Then h extends (relative to the
embedding ιC∞

) to a homeomorphism of ω(C∞) if and only if h[Cj
n(k)] and h−1[Cj

n(k)] are
both in C∞ for every n, j, k ∈ lN with k ≥ 2.

Proof: If h extends, the condition follows from R34.4.7 since Cj
n(k) is in C∞ for every

n, j, k ∈ lN with K ≥ 2. Conversely assume the condition holds and let C ∈ C∞. Then
C = D ∩ lN for some D ∈ D∞. By definition of D∞ there is k ∈ lN with k ≥ 2 such
that D ∈ Dk. By definition of Dk, D is a finite union of equivalence classes, i.e., there

exist t in lN , z(1) . . . , z(t) ∈ Z , and n(1), . . . , n(t) ∈ lN such that D = ∪t
i=1D

z(i)
n(i)(k).

For each i pick j(i) ∈ lN such that j(i) ≡ z(i) mod kn(i). Since D
z(i)
n(i)(k) ∩ lN = C

j(i)
n(i)(k),

C = ∪t
i=1C

j(i)
n(i)(k). Since C∞ is closed under finite unions, by the hypothesis for this part

h[C ] = ∪t
i=1h[C

j(i)
n(i)(k)] and h−1[C ] = ∪t

i=1h
−1[C

j(i)
n(i)(k)] are both in C∞. By R32.4.3 h

extends as required.

The following is similar to R32.5.8.

Proposition R32.Add.16 Let h be a permutation of lN . Then h extends (relative
to the embedding g∞) to a homeomorphism of R∞ if and only if h[Cj

n(k)] and h−1[Cj
n(k)]

are both in C∞ for every n, j, k ∈ lN with k ≥ 2.

Proof: This follows from the previous lemma, R32.1.3, and R27.4.14.

The following is similar to R32.5.9.

Corollary R32.Add.17 Let h be a permutation of lNand assume h extends (relative
to g∞) to a homeomorphism of R∞. Then h extends to a homeomorphism of lN∞ .

Proof: Because C∞ ⊆ Z∞, this follows from R32.Add.16 and R32.Add.12.

The example in R32.5.10 also shows that the converse of R32.Add.17 is false.

Example R32.Add.18 Let h be the permutation of lN described in R32.5.10. As
shown there, for n, j, k ∈ lN with k ≥ 2, h[Cj

n(k)] ∈ Zk ⊆ Z∞. Because h−1 = h, by
R32.Add.12 h extends to an auto-homeomorphism of lN∞ . It was also shown in R35.5.10
that 2 is the only even number in h[C1

1(2)]. Since any equivalence class containing 2 must
contain infinitely many evens, h[C1

1(2)] is not a finite union of equivalence classes, i.e., it
is not in C∞. By R32.Add.16, h does not extend (relative to g∞) to R∞.
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Note that it can be shown that h in the previous example is not a homeomorphism of
(lN , σ∞) or of (lN , σk) for any k ≥ 2.

Proof of the last claim: For every k ≥ 2, B∗
k = {B ∩ lN : B ∈ Bk} is a basis for

σk. First suppose k is even. Then C1
1(k) contains only odd integers and 2 is the only even

integer in h[C1
1(k)]. For every n, C2

n(k) contains infinitely many evens. Thus no basic
set containing 2 is a subset of h[C1

1(k)], i.e., h[C1
1(k)] is not in σk, i.e., h is neither open

nor continuous from (lN , σk) to itself. Now suppose k is odd. Now the even members of
h[C1

1(k)] are 2 and {1 +mk : m is an odd positive integer }. Suppose C2
n(k) ⊆ h[C1

1(k)].
Then 2+2kn = 1+mk for some odd m. That implies that k is a divisor of 1, a contradiction
since k ≥ 2. As before, no basic set containing 2 is a subset of h[C1

1(k)], i.e., h[C1
1(k)] is

not in σk, i.e., h is neither open nor continuous from (lN , σk) to itself. Finally, ∪∞
k=2B∗

k is
a subbase for σ∞. Any finite intersection of equivalence classes containing 2 must contiain
infinitely many even numbers. Thus h[C1

1(2)] is not in σ∞ because no basic set containing
2 is a subset of h[C1

1(2)], i.e., h is not open or continuous from (lN , σ∞) to itself.
An unanswered question: With the additional assumption that h is a homeomor-

phism (of (lN , σk), respectively (lN , σ∞)), can partial converses of R32.5.9, respectively
R32.Add.17, be proven?
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