
Normal Bases for Finite-Point Compactifications

In [4] it is shown that every finite-point compactification of an infinite discrete space
is equivalent to a compactification generated from a normal basis. Here that result and the
technique used to prove it are generalized to finite-point compactifications of an arbitrary
non-compact T3 1

2
space. It is also shown that a supremum of finite-point compactifications

must be a Wallman compactification.
Note that all compactifications considered are T2 compactifications and that a non-

compact space has a finite-point compactification if and only if it is locally compact and
T2. For A ⊆ X, A denotes the closure of A in X.

Let (X, τ ) be a non-compact T2 topological space. A pairwise disjoint family {Gi :
i = 1, . . . , n} of open sets whose union has a compact complement K such that K ∪Gi is
not compact for each i will be called an n-star of (X, τ ). In what follows, when an n-star
is given as a pairwise disjoint family {Gi : i = 1, . . . , n}, the compact set X −∪n

i=1Gi will
be implicit unless needed. In R5.1.1 it is shown that a T2 space with an n-star is locally
compact and n-stars determine n-point compactifications.

When (X, τ ) is discrete, infinitely many examples of n-stars are provided by n-
compatible equivalence relations. See R5.1.9 and R5.1.10. For an arbitrary non-compact
locally compact T2 space (X, τ ), {X} is a 1-star, which determines the one-point com-
pactification. In lR both {(−∞, 0), (0,∞)} and {−∞,−1)), (1,∞)} are a 2-stars, which
determine equivalent two-point compactifications.

The Normal Basis Generated by an n-star

Definition R33.1.1 Let {Gi : i = 1, . . . , n} be an n-star for the non-compact T2

topological space (X, τ ) and let S ⊆ X. Let ∆ ⊆ {1, 2 . . . , n}. S is associated with ∆ if
and only if i ∈ ∆ implies S ∩Gi has compact closure in X and i /∈ ∆ implies (X −S)∩Gi

has compact closure in X.
When (X, τ ) is discrete, this definition reduces to R5.3.1.
Lemma R33.1.2 Let {Gi : i = 1, . . . , n} be an n-star for the non-compact T2 topo-

logical space (X, τ ) and let S ⊆ X. Assume S is associated with ∆1 and with ∆2, both
subsets of {1, 2, . . . , n}. Then ∆1 = ∆2

Proof: Let K = X − ∪n
i=1Gi. First note that K ∪ Gi is closed for each 1 ≤ i ≤ n

because its complement is the open set ∪{Gj : j 6= i}. Now let i ∈ ∆1 so that S ∩Gi has
compact closure in X. Suppose i /∈ ∆2 so that (X − S) ∩ Gi also has compact closure in
X. Since Gi = (S ∩ Gi) ∪ ((X − S) ∩ Gi), Gi is the union of two compact sets and so
compact. Since K ∪ Gi is closed, Gi ⊆ K ∪ Gi. Then the closed set K ∪ Gi is contained
in K ∪ Gi, a union of two compact sets, so that K ∪ Gi is compact. But by definition of
an n-star K ∪Gi is not compact, a contradiction. Thus i ∈ ∆2. Similarly ∆2 ⊆ ∆1.

Lemma R33.1.3 Let (X, τ ) be a topological space, let S ⊆ X, and let G ∈ τ . Then

S ∩ G = S ∩G.
Proof: Since S ∩G is a closed set containing S∩G, S ∩G ⊆ S ∩G. Now let x ∈ S ∩G

and let x ∈ O ∈ τ . Pick t ∈ (S ∩G)∩O. Then t is in S and in the open set G∩O so that
there is s in S ∩ (G ∩O) = (S ∩ G) ∩O. Thus x ∈ S ∩G.

Lemma R33.1.4 Let {Gi : i = 1, . . . , n} be an n-star for the non-compact T2 topo-
logical space (X, τ ) and let S ⊆ X. Then
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i) S is associated with {1, 2, . . . , n} if and only if S is compact.
ii) If S is associated with ∆, then X − S is associated with {1, 2, . . . , n} − ∆.
iii) If S is associated with ∆, S is also associated with ∆.

Proof: Let K = X − ∪n
i=1Gi and write X as K ∪ (∪n

i=1Gi) so that one can write
S = (S ∩K) ∪ (∪n

i=1(S ∩ Gi)) and S = S ∩K ∪ (∪n
i=1S ∩Gi). Since K is compact, so is

S ∩K ⊆ K. Thus, if S is associated with {1, 2, . . . , n}, the definition and second equation
show that S is compact. Conversely, if S is compact, for 1 ≤ i ≤ n, S ∩Gi ⊆ S and so has
compact closure. Thus i) holds. Part ii) follows from the definition because X− (X−S) =

S. For part iii) assume S is associated with ∆. If i ∈ ∆, because S ∩Gi = S ∩ Gi is
compact, S∩Gi has compact closure in X. If i /∈ ∆, because X−S ⊆ X−S, (X−S)∩Gi

has compact closure in X. The conclusion follows from the definition.
Lemma R33.1.5 Let {Gi : i = 1, . . . , n} be an n-star for the non-compact T2 topo-

logical space (X, τ ) and let S, T be subsets of X. Assume S is associated with ∆ and T is
associated with Γ. Then S∪T is associated with ∆∩Γ and S∩T is associated with ∆∪Γ.

Proof: For i ∈ ∆∩ Γ, because S ∩Gi and T ∩Gi both have compact closure in X, so
does (S ∪ T ) ∩Gi. For i /∈ ∆ ∩ Γ, at least one of (X − S)∩Gi, (X − T ) ∩Gi has compact
closure in X, which implies that (X − (S ∪ T )) ∩ Gi = ((X − S) ∩ (X − T )) ∩ Gi does
as well. Thus the first assertion holds. For i ∈ ∆ ∪ Γ, at least one of S ∩ Gi, T ∩ Gi has
compact closure in X so that (S ∩T )∩Gi does also. For i /∈ ∆∪Γ, both (X −S)∩Gi and
(X−T )∩Gi have compact closure in X so that (X−(S∩T ))∩Gi = ((X−S)∪(X−T ))∩Gi

does as well. Thus the second claim holds.
Definition R33.1.6 Let S = {Gi : i = 1, . . . , n} be an n-star for the non-compact

T2 topological space (X, τ ). Z(S) is defined to be

{Z ⊆ X : Z is τ − closed and Z is associated with some ∆ ⊆ {1, . . . , n}}.

The next lemma shows that Z(S) has the first three properties in P3.1, the definition
of a normal basis. By R33.1.4i Z(S) contains all finite subsets of X and so is a non-empty
family of closed sets.

Lemma R33.1.7 Let S = {Gi : i = 1, . . . , n} be an n-star for the non-compact T2

topological space (X, τ ). Then

i) Z(S) is a base for the closed sets of (X, τ ).
ii) Z(S) is closed under finite unions and intersections.
iii) If E is closed in (X, τ ) and x /∈ E, then there is Z ∈ Z(S) such that x ∈ Z and
Z ∩E = ∅.

Proof: Because the closed sets are closed under finite unions and intersections, part
ii) is immediate from R33.1.5. Let E be closed and x /∈ E. By R33.1.4i {x} ∈ Z(S)
and so iii) holds. As noted above (X, τ ) is locally compact and so there is O open with
x ∈ O ⊆ O ⊆ X − E, where O is compact. By the first two parts of R33.1.4 X − O is
associated with ∅ and so is in Z(S). Since x /∈ X −O and E ⊆ X −O, part i) holds.

Verifying the fourth requirement is done in the next 2 lemmas.
Lemma R33.1.8 Let S = {Gi : i = 1, . . . , n} be an n-star for the non-compact

T2 topological space (X, τ ). Let Z1, Z2 be in Z(S) with Zi associated with ∆i. Assume
Z1 ∩ Z2 = ∅. Then ∆1 ∪ ∆2 = {1, . . . , n}.
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Proof: By R33.1.4i ∅ is associated with {1, . . . , n} and by R33.1.5 Z1∩Z2 is associated
with ∆1 ∪ ∆2. The conclusion follows from R33.1.2.

Lemma R33.1.9 Let S = {Gi : i = 1, . . . , n} be an n-star for the non-compact
T2 topological space (X, τ ). Let Z1, Z2 be in Z(S) with Zi associated with ∆i. Assume
Z1 ∩ Z2 = ∅. Then there are C,D ∈ Z(S) such that C ∪ D = X, Z1 ⊆ X − C , and
Z2 ⊆ X −D.

Proof: Let K be the complement in X of ∪n
i=1Gi so that X = K ∪ G1 ∪ · · · ∪ Gn.

K ∩ Z1 is a compact subset of the open set X − Z2. As noted above, (X, τ ) is locally
compact and so there is O0 ∈ τ with O0 compact such that K ∩Z1 ⊆ O0 ⊆ O0 ⊆ X − Z2.
For each i ∈ ∆1, Z1 ∩Gi is a compact subset of Z1, which is contained in the open
set X − Z2. Again by local compactness, there is Oi ∈ τ with Oi compact such that
Z1 ∩ Gi ⊆ Oi ⊆ Oi ⊆ X − Z2. For i /∈ ∆1, by the previous lemma i ∈ ∆2 and so Z2 ∩Gi

is compact. By local compactness, since Z2 ∩Gi ⊆ Z2 ⊆ X − Z1, there is O∗
i open with

O∗
i compact such that Z2 ∩Gi ⊆ O∗

i ⊆ O∗
i ⊆ X − Z1. Similarly, for the compact Z2 ∩K,

there is O∗
0 open with O∗

0 compact such that Z2 ∩ K ⊆ O∗
0 ⊆ O∗

0 ⊆ X − Z1. Now for
i /∈ ∆1, let Oi = (X −O∗

i ) ∩ Gi ∩ (X −O∗
0) .

Next define C = X −∪n
i=0Oi and D = ∪n

i=0Oi. Clearly C and D are closed sets with
C ∪D = X. Note that, for i /∈ ∆1, Z1 ⊆ (X −O∗

0) ∩ (X −O∗
i ) so that Z1 ∩ Gi ⊆ Oi. By

construction Z1 ∩K ⊆ O0 and, for i ∈ ∆1, Z1 ∩Gi ⊆ Oi. Z1 = (Z1 ∩K)∪ (∪n
i=1(Z1 ∩Gi))

and so Z1 ⊆ ∪n
i=0Oi = X − C . To see that Z2 ⊆ X −D, first note that by construction

Z2 ⊆ X − O0 and, for i ∈ ∆1, Z2 ⊆ X − Oi. For i /∈ ∆1, it is claimed that Z2 ⊆ X −Oi

as well. Deny that and let x ∈ Z2 with x ∈ Oi. Since Oi ⊆ X − O∗
0 ⊆ X − O∗

0 which
is closed, Oi ⊆ X − O∗

0 ⊆ X − (Z2 ∩ K). Since x /∈ Z2 ∩ K and x ∈ Z2, x /∈ K. Also
Oi ⊆ Gi ⊆ K ∪ Gi which is closed. Thus Oi ⊆ K ∪ Gi. Because x /∈ K, x ∈ Gi. Since
x ∈ Z2, x ∈ Z2∩Gi ⊆ O∗

i . But Oi ⊆ X−O∗
i ⊆ X−O∗

i which is closed, so that Oi ⊆ X−O∗
i

and x /∈ O∗
i , a contradiction. In summary, Z2 ⊆ ∩n

i=0(X −Oi) = X −D.
To finish, it is necessary to show that both C and D are in Z(S). First note that, for

i ∈ ∆1∪{0}, Oi is compact and so by R33.1.4i Oi and Oi are associated with {1, 2, . . . , n}.
By R33.1.4ii X − Oi is associated with ∅. Thus X − Oi and Oi are both in Z(S). Now
suppose i /∈ ∆1. Oi ⊆ Gi and so, for j 6= i, Oi∩Gj = ∅, which is compact. (X−Oi)∩Gi =
(O∗

i ∪ (X −Gi)∪O∗
0)∩Gi ⊆ O∗

i ∪O
∗
0 , which is the union of two compact sets. Thus Oi is

associated with {1, 2, . . . , n}−{i}. By R33.1.4iiiOi is also associated with {1, 2, . . . , n}−{i}
so that Oi is in Z(S). By R33.1.4ii X −Oi is associated with {i} and so is in Z(S). Since
Z(S) is closed under finite unions and intersections, D = ∪n

i=0Oi and C = ∩n
i=0(X −Oi)

are both in Z(S), as required.
Corollary R33.1.10 Let S = {Gi : i = 1, . . . , n} be an n-star for the non-compact

T2 topological space (X, τ ). Then Z(S) is a normal basis for (X, τ ).
Proof: R33.1.7 and R33.1.9 show that Z(S) has the properties in P3.1, the definition

of a normal basis.
When (X, τ ) is discrete, R33.1.10 reduces to R5.3.3.

The Compactification Generated by Z(S)
Given {Gi : i = 1, . . . , n} an n-star for the non-compact T2 topological space (X, τ ),

let p1, . . . , pn be n distinct objects not in X, let Y = X ∪ {p1, . . . , pn}, let σ be the set
{O ⊆ Y : O ∩ X ∈ τ and pi ∈ O ⇒ (X − O) ∩ Gi has compact closure in X}, and let
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f : X → Y by f(x) = x. In [4] it is noted that σ is a topology and (Y, f) is an n-point T2

compactification of (X, τ ). (Y, f) will be called the n-point compactification determined
by the n-star. The argument that (Y, σ) is compact and T2 uses only the T2 property of
X, although that is not emphasized in [4].

Definition R33.2.1 Let S = {Gi : i = 1, . . . , n} be an n-star for the non-compact
T2 topological space (X, τ ) and let 1 ≤ i ≤ n. The set Fi is defined by

Fi = {Z ∈ Z(S) : Z is associated with some ∆ ⊆ {1, . . . , n} − {i}}.

To avoid subscript ambiguity, in what follows the point-filter of x in a space will be
denoted F(x). The next lemma is a generality used in what follows.

Lemma R33.2.2 Let (X, τ ) be a T3 1

2
space with normal basis Z and let H be a

Z-filter. Assume C is a compact subset of X and C ∈ H. Then there is x ∈ X such that
H ⊆ F(x).

Proof: The set {C ∩ Z : Z ∈ H} is contained in H and is a family of closed subsets
of C . Because H is closed under finite intersections and ∅ /∈ H, {C ∩ Z : Z ∈ H} has the
finite intersection property. Since C is compact, there is x in ∩{C ∩ Z : Z ∈ H}. For any
Z ∈ H, x ∈ Z ∩ C and so Z ∈ F(x), i.e., H ⊆ F(x).

Lemma R33.2.3 Let S = {Gi : i = 1, . . . , n} be an n-star for the non-compact T2

topological space (X, τ ) and let 1 ≤ i ≤ n. Then
i) Fi is a Z(S)-filter.
ii) Fi is a Z(S)-ultrafilter.
iii) Fi is not a Z(S) point-filter.
iii) For 1 ≤ j ≤ n with i 6= j, Fi 6= Fj .

Proof: X is associated with ∅ and so is in Fi. Also ∅ is associated with {1, . . . , n} and
so is not in Fi. Thus Fi is a non-empty collection of non-empty Z(S)-sets. Let Z1, Z2 be
in Fi with Z1 associated with ∆1 and Z2 associated with ∆2. By definition i /∈ ∆1 ∪ ∆2.
By R33.1.5 Z1 ∩ Z2 is associated with ∆1 ∪ ∆2 and so Z1 ∩ Z2 ∈ Fi. Next let Z ⊆ W ,
where Z ∈ Fi and W ∈ Z(S) is associated with Γ. If i ∈ Γ, Z ∩ Gi ⊆ W ∩Gi, which is
compact, so that i is in the set associated with Z, a contradiction. Thus i /∈ Γ so that
W ∈ Fi and the first assertion holds. For part ii), let G be a Z(S)-filter with Fi ⊆ G. Let
Z ∈ G be associated with ∆ and suppose Z /∈ Fi, i.e., i ∈ ∆. Note that Gi is associated
with {1, . . . , n} − {i}, as is Gi by R33.1.4iii, so that Gi is in Fi and so in G. Z ∩ Gi is
in G and by R33.4.5 it is associated with {1, . . . , n}. By R33.1.4i Z ∩ Gi is compact. By
R33.2.2 there is x ∈ X such that G ⊆ F(x). By local compactness there is O ∈ τ with
x ∈ O and O compact. By parts i) and ii) of R33.1.4, X −O is associated with ∅ so that
X −O ∈ Fi. But X −O /∈ F(x), which contradicts G ⊆ F(x). Thus Z ∈ Fi and ii) holds.
For iii), let x ∈ X. Since {x} is associated with {1, . . . , n}, {x} ∈ Z(S), {x} ∈ F(x), and
{x} /∈ Fi. Thus Fi 6= F(x). Finally, let j 6= i with 1 ≤ j ≤ n. As above, Gi is in Fi and is
associated with {1, . . . , n} − {i}. By definition Gi /∈ Fj and so Fi 6= Fj .

Lemma R33.2.4 Let S = {Gi : i = 1, . . . , n} be an n-star for the non-compact T2

topological space (X, τ ). Let H be a Z(S)-ultrafilter. Then either there is 1 ≤ i ≤ n such
that H = Fi or H is a Z(S) point-filter.

Proof: Assume H 6= Fi for all 1 ≤ i ≤ n. For each i, since H is a Z(S)-ultrafilter,
H cannot be a proper subset of Fi and so there is Zi associated with ∆i with Zi ∈ H
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and Zi /∈ Fi, i.e., i ∈ ∆i. Let Z = ∩n
i=1Zi. Then Z is in H and Z is associated with

∪n
i=1∆i = {1, . . . , n} by R33.1.5. By R33.1.4i Z is compact and by R33.2.2 there is x ∈ X

such that H ⊆ F(x). Since H is a Z(S)-ultrafilter, H = F(x).
The next result generalizes R5.3.8.
Proposition R33.2.5 Let S = {Gi : i = 1, . . . , n} be an n-star for the non-compact

T2 topological space (X, τ ) and let (Y, f) be the n-point compactification determined by
S. Then (Y, f) is equivalent to (ω(Z(S)), ιZ(S)).

Proof: Define φ : Y → ω(Z(S)) by φ(x) = F(x) for x ∈ X and φ(pi) = Fi. It
follows easily from R33.2.3 and R33.2.4 that φ is a bijection. By definition φ ◦ f = ιZ(S).
Thus it remains to show that φ is continuous. For that, because {Zω : Z ∈ Z(S)} is a
base for the closed sets of ω(Z(S)), it is sufficient to show that φ−1[Zω] is closed in Y for
every Z ∈ Z(S). Let Z be in Z(S) be associated with ∆ and let A = Y − φ−1[Zω]. First,
x ∈ X−Z if and only if Z /∈ F(x), i.e., φ(x) /∈ Zω, i.e., x /∈ φ−1[Zω]. Thus A∩X = X−Z,
which is open in X, and X − A = Z. Next pj ∈ A if and only if φ(pj) /∈ Zω, i.e., Z /∈ Fj ,
i.e., j ∈ ∆. Thus pj ∈ A implies (X − A) ∩ Gj = Z ∩ Gj has compact closure in X. By
the definition of the topology for Y , A is open in Y so that X −A = φ−1[Zω] is closed as
required.

The next corollary could also be expressed by saying every finite-point compactifica-
tion of a T3 1

2
space is a Wallman compactification.

Corollary R33.2.6 Let (X, τ ) be a non-compact T3 1
2

space with a finite-point com-

pactification (S, g). Then (S, g) is equivalent to a compactification generated from a normal
basis.

Proof: The given compactification is an n-point compactification for some n. By
R5.1.2 there is S = {Gi : i = 1, . . . , n} an n-star for X such that (Y, f), the n-point
compactification determined by S, is equivalent to (S, g). By the previous proposition and
transitivity, (S, g) is equivalent to (ω(Z(S)), ιZ(S)).

Ordering of Finite-Point Compactifications

The first proposition on equivalence is essentially a corollary of a result of Magill [1].
It will subsequently be refined for ordered but non-equivalent cases.

Proposition R33.3.1 Let S = {Gi : i = 1, . . . , n} and R = {Oi : i = 1, . . . , n} be
n-stars for the non-compact T2 topological space (X, τ ). Let K1 = X − ∪n

i=1Gi. Then
(ω(Z(S)), ιZ(S)) is equivalent to (ω(Z(R)), ιZ(R)) if and only if there is σ, a permutation
of {1, . . . , n}, such that (K1 ∪Gi) ∩ (X −Oσ(i)) is compact for every 1 ≤ i ≤ n.

Proof: Let (YS , fS) and (YR, fR) be the n-point compactifications determined by S,
R respectively. By R5.1.5 (YS , fS) is equivalent to (YR, fR) if and only if there is σ, a
permutation of {1, . . . , n}, such that (K1∪Gi)∩(X−Oσ(i)) is compact for every 1 ≤ i ≤ n.
By transitivity and R33.2.5 the conclusion holds.

Comment: The proposition is expressed asymmetrically with regard to S and R.
Reversing their roles would produce a permutation µ such that (J ∪ Oi) ∩ (X −Gµ(i)) is
compact for every 1 ≤ i ≤ n, where J = X − ∪n

i=1Oi. By using the uniqueness of the
connecting map and details of its construction, it can be shown that µ = σ−1. That will
not be needed in what follows.

The next lemma applies to any T2 compactification, not just finite-point examples. It
is undoubtedly known but is recorded here for completeness and ease of reference.
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Lemma R33.3.2 Let (X, τ ) be a T3 1
2

space with T2 compactifications (Y, f) and

(Z, g). Assume φ : Z → Y is continuous with φ ◦ g = f . Then φ[Z − g[X]] = Y − f [X].

Proof: As usual φ is onto from general considerations and by hypothesis φ(g(x)) is in
f [X] for every x ∈ X. Thus Y − f [X] ⊆ φ[Z − g[X]]. Now let z ∈ Z − g[X] and suppose
φ(z) = f(x) for some x ∈ X. By the density of g[X] in Z, there is a net {xα} in X such
that {g(xα)} converges to z. Since φ is continuous and φ(g(xα)) = f(xα), the net {f(xα)}
converges to φ(z) = f(x). Because f : X → f [X] is a homeomorphism, {xα} converges to
x in X. By the continuity of g, {g(xα)} converges to g(x). Since limits are unique in T2

spaces, z = g(x), which contradicts the choice of z. Thus φ[Z − g[X]] ⊆ Y − f [X].

Proposition R33.3.3 Let S = {Gi : i = 1, . . . , n} be an n-star for the non-compact
T2 topological space (X, τ ) and let R = {Oi : i = 1, . . . ,m} be an m-star for the same
space. Let K = X − ∪m

i=1Oi. Then (ω(Z(S)), ιZ(S)) ≤ (ω(Z(R)), ιZ(R)) if and only if
there is an onto map r : {1, . . . ,m} → {1, . . . , n} such that, for every 1 ≤ i ≤ n and
j ∈ r−1 [{i}], (X −Gi) ∩ (K ∪Oj) is compact in X.

Proof: Let (YS , fS) and (YR, fR) be the n-point, respectively m-point, compact-
ifications determined by S and R. Notationally, assume YS = X ∪ {p1, . . . , pn} and
YR = X ∪ {q1, . . . , qm}. By transitivity and R33.2.5, the proposition holds if it can be
verified for these representatives. First assume r exists. Define φ : YR → YS by φ(x) = x
and φ(qt) = pr(t). By definition φ ◦ fR = fS and, since r is onto, φ is onto. It remains to
check that φ is continuous. Let O be open in YS . By definition of φ, φ−1[O]∩X = O ∩X,
which is in τ . Let qj ∈ φ−1[O]. To see that (X − φ−1[O]) ∩ Oj has compact closure in
X, first note that φ(qj) = pr(j) is in O and so (X − O) ∩ Gr(j) has compact closure in
X. By hypothesis for this part, (X − Gr(j)) ∩ (K ∪ Oj) is compact in X. It is suffi-
cient to verify that (X − φ−1[O]) ∩ Oj ⊆ ((X − O) ∩ Gr(j)) ∪ ((X − Gr(j)) ∩ (K ∪ Oj)).
Let x ∈ (X − φ−1[O]) ∩ Oj . If x ∈ Gr(j), by definition of φ, x ∈ (X − O) ∩ Gr(j). If
x /∈ Gr(j), then, since x ∈ Oj ⊆ (K ∪ Oj), x ∈ (X −Gr(j)) ∩ (K ∪ Oj). Thus the needed
containment holds. Conversely, assume ψ : YR → YS is continuous with ψ ◦ fR = fS .
In this situation ψ is onto and, by R33.3.2, maps {q1, . . . , qm} onto {p1, . . . , pn}. Define
r : {1, . . . ,m} → {1, . . . , n} by r(j) = i where ψ(qj) = pi. Clearly r is onto. Let 1 ≤ i ≤ n
and j ∈ r−1[{i}] so that ψ(qj) = pi. By definition of the topology on YS , Gi ∪{pi} is open
in YS and so ψ−1[Gi ∪ {pi}] is open in YR. By definition of fR and gS , ψ(x) = x and so
X − ψ−1[Gi ∪ {pi}] = X − Gi. Since qj ∈ ψ−1[Gi ∪ {pi}], (X − Gi) ∩ Oj has compact
closure in X. Because K ∪ Oj is closed in X and K is compact, (X − Gi) ∩ (K ∪ Oj) is
compact in X.

In the last proposition the proof that the existence of r is sufficient does not make
clear the role of its surjectivity. It guarantees that the defined φ is onto, of course, but that
would follow from general considerations if φ could be shown continuous without using the
fact that r is onto. The next lemma and proposition, which are a bit of a digression, show
that the hypothesis cannot be true if r is not onto.

Lemma R33.3.4 Let R = {Oi : i = 1, . . . ,m} be an m-star for the non-compact T2

space (X, τ ). Let (YR, fR) m-point compactification determined R. Notationally, assume
YR = X ∪ {q1, . . . , qm}. Let O ∈ τ and assume that O ∪ {q1, . . . , qn} is open in YR. Then
X −O is compact in X.

Proof: X−O = X −O = (K∩(X−O)∪(∪m
i=1Oi ∩ (X −O), where K = X−∪m

i=1Oi.
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By hypothesis each term in that finite union is compact and so X −O is compact.

Proposition R33.3.5 Let S = {Gi : i = 1, . . . , n} be an n-star for the non-compact
T2 topological space (X, τ ) and let R = {Oi : i = 1, . . . ,m} be an m-star for the same
space. Let K = X − ∪m

i=1Oi. Assume r : {1, . . . ,m} → {1, . . . , n} is not onto. Then there
is 1 ≤ i ≤ n and j ∈ r−1[{i}] such that (X −Gi) ∩ (K ∪Oj) is not compact in X.

Proof: Let G = ∪{Gi : r−1 [{i}] 6= ∅}, an open set in X. If one assumes the conclusion
is false, then, for every 1 ≤ j ≤ m, (X −G)∩Oj has compact closure in X because it is a
subset of (X −Gr(j))∩Oj . Thus G∪ {q1, . . . , qm} is open in YR. By the lemma X −G is
compact. Because r is not onto, there is 1 ≤ k ≤ n such that r−1[{k}] = ∅. By definition
of G and the disjointness property of the n-star, Gk ⊆ X −G. For J = X − ∪n

i=1Gi, the
closed non-compact set J∪Gk is contained in the compact set J∪(X−G), a contradiction.

This proposition shows that R33.3.3 can be simplified as follows.

Corollary R33.3.6 Let S = {Gi : i = 1, . . . , n} be an n-star for the non-compact
T2 topological space (X, τ ) and let R = {Oi : i = 1, . . . ,m} be an m-star for the same
space. Let K = X − ∪m

i=1Oi. Then (ω(Z(S)), ιZ(S)) ≤ (ω(Z(R)), ιZ(R)) if and only if
there is a map r : {1, . . . ,m} → {1, . . . , n} such that, for every 1 ≤ i ≤ n and j ∈ r−1 [{i}],
(X −Gi) ∩ (K ∪Oj) is compact in X.

Proof: The necessity of the condition is immediate from R33.3.3. The sufficiency
follows from R33.3.5 and R33.3.3.

Lemma R33.3.7 Let S = {Gi : i = 1, . . . , n} be an n-star for the non-compact T2

topological space (X, τ ) and let R = {Oi : i = 1, . . . ,m} be an m-star for the same space.
Assume there is a map r : {1, . . . ,m} → {1, . . . , n} such that, for every 1 ≤ i ≤ n and
j ∈ r−1[{i}], (X − Gi) ∩ (K ∪ Oj) is compact in X, where K = X − ∪m

i=1Oi. Let Z be
associated with ∆ relative to S. Then Z is associated with r−1[∆] relative to R.

Proof: Let j ∈ {1, . . . ,m} and let i = r(j). If j ∈ r−1 [∆], i ∈ ∆ so that Z ∩ Gi

has compact closure in X. Z ∩ Oj = (Z ∩ Oj ∩ Gi) ∪ (Z ∩ Oj ∩ (X − Gi)). The first
term of that union is contained in Z ∩ Gi and the second is contained in the compact
(X −Gi) ∩ (K ∪Oj). Thus Z ∩Oj has compact closure in X. If j /∈ r−1 [∆], i /∈ ∆ and so
(X − Z) ∩Gi has compact closure in X. Now proceed exactly as before: (X − Z)∩Oj =
((X −Z)∩Oj ∩Gi)∪ ((X −Z)∩Oj ∩ (X −Gi)). The first term of that union is contained
in (X − Z) ∩Gi and the second is contained in the compact (X −Gi) ∩ (K ∪Oj).

Corollary R33.3.8 Let S = {Gi : i = 1, . . . , n} be an n-star for the non-compact T2

topological space (X, τ ) and let R = {Oi : i = 1, . . . ,m} be an m-star for the same space.
Assume (ω(Z(S)), ιZ(S)) ≤ (ω(Z(R)), ιZ(R)). Then Z(S) ⊆ Z(R).

Proof: By R33.3.6 the hypothesis of R33.3.7 holds. The conclusion follows from the
definition of the normal basis determined by a k-star and R33.3.7.

In the next proposition superscript notation will be used to distinguish filters in the
two normal bases, Z(S) and Z(R).

Proposition R33.3.9 Let S = {Gi : i = 1, . . . , n} be an n-star for the non-compact
T2 topological space (X, τ ) and let R = {Oi : i = 1, . . . ,m} be an m-star for the same
space. Assume (ω(Z(S)), ιZ(S)) ≤ (ω(Z(R)), ιZ(R)). Then, for every FR in ω(Z(R)),
FR ∩ Z(S) is in ω(Z(S)).

Proof: Let FR(x) be the Z(R) point-filter of x. By R33.3.8 Z(S) ⊆ Z(R) and so by
R9.1.1ii FR(x)∩Z(S) = FS(x), the Z(S) point-filter of x. Now assume FR is a non-point
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Z(R)-ultrafilter. By R33.2.4 FR = FR
j for some j ∈ {1, . . . ,m}. By R33.3.6 there is a

map r so that the hypothesis of R33.3.7 holds. Let i = r(j). Let Z in FS
i be associated with

∆. By definition R33.2.1 ∆ ⊆ {1, . . . , n} − {i} and Z ∈ Z(S). By R33.3.7 Z is associated
with r−1 [∆] relative to Z(R) and so Z ∈ ZR) by definition. Note that j /∈ r−1 [∆] because
r(j) = i is not in ∆. By R33.2.1 Z ∈ FR

j ∩ Z(S). Thus FS
i ⊆ FR

j ∩Z(S). The latter is a

Z(S)-filter by R9.1.1i and FS
i is a Z(S)-ultrafilter by R32.2.3ii. Thus FS

i = FR
j ∩ Z(S).

Suprema of Finite-Point Compactifications

Proposition R33.4.1 Let S = {Gi : i = 1, . . . , n} be an n-star for the non-compact
T2 topological space (X, τ ) and let R = {Oi : i = 1, . . . ,m} be an m-star for the same
space. Let P = {Gi ∩ Oj : Gi ∩Oj is not compact in X}. Then P is a k-star for (X, τ )
for some k, with max{m,n} ≤ k ≤ mn.

Proof: Let P = {(i, j) : Gi∩Oj : Gi ∩Oj is not compact in X} and let k = |P |. Since
P ⊆ {1, . . . , n}×{1, . . . ,m}, k ≤ mn. Clearly k = |P|. By definition each Gi ∩Oj is open
and, if (i, j) 6= (r, s), (Gi∩Oj)∩(Gr∩Os) is empty. Thus P is a pairwise disjoint collection
of open sets. Now let L = X−∪{Gi∩Oj : (i, j) ∈ P}, a closed set. ForK = X−∪n

i=1Gi and
J = X−∪m

j=1Oj , it will be shown that L ⊆ K∪J∪(∪{Gi ∩Oj : Gi ∩ Oj is compact in X}),
a finite union of compact sets. Let x ∈ L and suppose x /∈ K ∪ J . Then there exist i, j
such that x ∈ Gi ∩Oj . Since x ∈ L, (i, j) /∈ P so that Gi ∩Oj is compact. Thus the claim
is verified so that L is compact. Now let (i, j) ∈ P . L ∪ (Gi ∩ Oj) is closed because its
complement is open by pairwise disjointness. Thus the non-compact Gi ∩ Oj is a subset of
L∪ (Gi ∩Oj) and so L∪ (Gi ∩Oj) must also be non-compact. By definition P is a k-star.
Finally let 1 ≤ i ≤ n and suppose, for every 1 ≤ j ≤ m, Gi ∩ Oj is compact. Because
Gi = (J ∩Gi)∪ (∪m

j=1(Gi ∩Oj)), Gi = J ∩ Gi ∪ (∪m
j=1Gi ∩Oj) so that Gi is compact. But

the non-compact closed set K ∪ Gi is contained in the compact K ∪ Gi, a contradiction.
Thus there is 1 ≤ j ≤ m such that (i, j) ∈ P and so k = |P | ≥ n. Similarly k ≥ m.

For results through R33.4.5 the following notation will be used: Let (X, τ ) be a non-
compact T2 topological space with n-star S = {Gi : i = 1, . . . , n} and m-star
R = {Oi : i = 1, . . . ,m}. Let P = {(i, j) : Gi ∩Oj is not compact in X} and let
P = {Gi ∩ Oj : (i, j) ∈ P}. The compactifications determined by S,R, and P will be
denoted (YS , fS), (YR, fR), and (YP , fP) respectively with YS = X ∪ {s1, . . . , sn},
YR = X ∪ {r1, . . . , rn}, and YP = X ∪ {p(i,j) : (i, j) ∈ P}.

Proposition R33.4.2 Let S = {Gi : i = 1, . . . , n} be an n-star for the non-compact
T2 topological space (X, τ ) and let R = {Oi : i = 1, . . . ,m} be an m-star for the same
space. Let P = {Gi ∩ Oj : Gi ∩Oj is not compact in X}. Then (YS , fS) ≤ (YP , fP) and
(YR, fR) ≤ (YP , fP).

Proof: Define σS : YP → YS by σS(x) = x for x ∈ X and σS(p(i,j)) = si. By definition

σS ◦ fP = fS . Now let G be open in YS . It is easy to check that X ∩ σ−1
S [G] = X ∩ G,

which is open in X. Likewise, X − σ−1
S [G] = X − G. If p(i,j) ∈ σ−1

S [G], si ∈ G and

(X − σ−1
S [G]) ∩ (Gi ∩ Oj) ⊆ (X − G) ∩ Gi, which has compact closure in X. Thus

σ−1
S [G] is open in YP and σS is continuous. By definition (YS , fS) ≤ (YP , fP). Similarly,

(YR, fR) ≤ (YP , fP).

The next two lemmas simplify the proof of the subsequent proposition.

Lemma R33.4.3 Let Q = {Wi : i = 1, . . . , j} be a j-star for the non-compact T2
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topological space (X, τ ) and let (YQ, fQ) be the compactification determined by Q, where
YQ = X ∪ {q1, . . . , qj}. Let C be a compact subset of X. Then

i) For 1 ≤ t ≤ j, Wt ∪ {qt} is open in YS .
ii) For 1 ≤ t ≤ j, (X − C) ∪ {qt} is open in YS .

Proof: Let 1 ≤ t ≤ j. (Wt ∪ {qt}) ∩ X = Wt, which is in τ by definition of a
j-star, and (X − (Wt ∪ {qt})) ∩Wt = ∅, which is compact. By definition Wt ∪ {qt} is
open in YQ and i) holds. Similarly ((X − C) ∪ {qt}) ∩ X = X − C , an open set, and
(X − ((X − C) ∪ {qt}) ∩Wt = C ∩Wt, which is contained in the compact C and so has
compact closure in X. By definition (X − C) ∪ {qt} is open in YQ and ii) holds.

Lemma R33.4.4 Let S = {Gi : i = 1, . . . , n} be an n-star for the non-compact
T2 topological space (X, τ ) and let R = {Oi : i = 1, . . . ,m} be an m-star for the same
space. Let (Z, g) be a compactification of (X, τ ) with continuous maps ψS : Z → YS and
ψR : Z → YR such that ψS ◦ g = fS and ψR ◦ g = fR. Let z ∈ Z − g[X] with ψS(z) = sa

and ψR(z) = rb. Then Ga ∩ Ob does not have compact closure in X.
Proof: Deny the conclusion. Since g[X] is dense in Z, there is {xα}, a net in X, such

that {g(xα)} converges to z. By continuity {ψS(g(xα))} converges to ψS(z) = sa in YS
and {ψR(g(xα))} converges to ψR(z) = rb in YR, i.e., {xα} converges to sa in YS and to
rb in YR. By the definitions of convergence and directed set, since Ga ∪{sa} and Ob ∪{rb}
are open in YS , YR respectively, there is α0 such that α ≥ α0 implies xα ∈ Ga ∩ Ob. By
the assumed compactness of Ga ∩Ob, the net {xα}α≥α0

has a subnet {xαβ
} converging

to some x in Ga ∩Ob ⊆ X. By continuity of g, {g(xαβ
)} converges to g(x) in Z. Since

{g(xαβ
)} is a subnet of {g(xα)}, {g(xαβ

)} also converges to z. Since limits in the T2 space
Z are unique, z = g(x), which contradicts the hypothesis for z.

Proposition R33.4.5 Let S = {Gi : i = 1, . . . , n} be an n-star for the non-compact
T2 topological space (X, τ ) and let R = {Oi : i = 1, . . . ,m} be an m-star for the same
space. Let P = {Gi ∩Oj : Gi ∩Oj is not compact in X}. Let (Z, g) be a compactification
of (X, τ ) with (YS , fS) ≤ (Z, g) and (YR, fR) ≤ (Z, g). Then (YP , fP) ≤ (Z, g).

Proof: By hypothesis there are continuous maps ψS : Z → YS and ψR : Z → YR
such that ψS ◦ g = fS and ψR ◦ g = fR. Define φ : Z → YP as follows: For z ∈ g[X]
with z = g(x), let φ(g(x)) = x. For z ∈ Z − g[X], by R33.3.2 ψS(z) = si for some
1 ≤ i ≤ n and ψR(z) = rj for some 1 ≤ j ≤ m. By R33.4.4 (i, j) ∈ P and so define
φ(z) = p(i,j). By definition φ ◦ g = fP . To see that φ is continuous, let G be open in YP .
It is easy to check that φ−1[G] ∩ g[X] = g[X ∩ G]. Since X is locally compact, g[X] is
open in Z and so the homeomorphism g : X → g[X] is an open map into Z. By definition
of the topology on YP , X ∩ G is open in X. Thus φ−1[G] is a neighborhood of every
point in φ−1[G] ∩ g[X]. Now let z ∈ φ−1[G] − g[X] with ψS(z) = si and ψR(z) = rj .

Then φ(z) = p(i,j) is in G and so (X −G) ∩ (Gi ∩Oj) is compact in X. By R33.4.3

{si} ∪ Gi and {si} ∪ (X − (X −G) ∩ (Gi ∩Oj)) are open in YS . Similarly {rj} ∪ Oj and

{rj} ∪ (X − (X −G) ∩ (Gi ∩Oj)) are open in YR. Let

V = ({si} ∪Gi) ∩ ({si} ∪ (X − (X −G) ∩ (Gi ∩ Oj))) and

W = ({rj} ∪Oj) ∩ ({rj} ∪ (X − (X −G) ∩ (Gi ∩Oj)).

V is open in YS and W is open in YR and so by continuity ψ−1
S [V ]∩ψ−1

R [W ] is open in Z.
Because ψS(z) = si and ψR(z) = rj , z ∈ ψ−1

S [V ]∩ψ−1
R [W ]. Now let w ∈ ψ−1

S [V ]∩ψ−1
R [W ].
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If w ∈ Z − g[X], because the only element of YS −X in V is si, ψS(w) = si. Similarly,
ψR(w) = rj and so by definition φ(w) = p(i,j) ∈ G. Thus w ∈ φ−1[G]. Now assume
w = g(x) for some x ∈ X. ψS(g(x)) = fS(x) = x ∈ V and similarly ψR(g(x)) = x ∈W so
that x ∈ (Gi ∩Oj) ∩ (X − (X −G) ∩ (Gi ∩Oj)). Then x must be in G because otherwise

x would be in (X −G) ∩ (Gi ∩Oj). To summarize, z ∈ ψ−1
S [V ] ∩ ψ−1

R [W ] ⊆ φ−1[G] so
that φ−1[G] is a neighborhood of z. Since φ−1[G] is a neighborhood of each of its points,
it is open and φ is continuous as required.

Corollary R33.4.6 Let S = {Gi : i = 1, . . . , n} be an n-star for the non-compact T2

topological space (X, τ ) and let R = {Oi : i = 1, . . . ,m} be an m-star for the same space.
Let P = {Gi ∩ Oj : Gi ∩ Oj is not compact in X}. Then the compactification (YP , fP )
acts as the supremum of (YS , fS) and (YR, fR).

Proof: R33.4.2 shows it is an upper bound and R33.4.5 shows it is the least upper
bound.

Corollary R33.4.7 Let {Sj : 1 ≤ j ≤ m} be a finite collection of finite stars for the
non-compact T2 topological space (X, τ ). Then there is a k-star P for (X, τ ) such that the
compactification (YP , fP) acts as the supremum of the collection {(YSj

, fSj
) : 1 ≤ j ≤ m}.

Proof: By induction: The claim is trivial for m = 1 and true for m = 2 by R33.4.6.
If it holds for any collection of size m, let a collection of size m + 1 be given. Apply
the induction hypothesis to obtain P∗ such that compactification (YP∗ , fP∗) acts as the
supremum of {(YSj

, fSj
) : 1 ≤ j ≤ m}. Apply R33.4.6 to obtain P such that (YP , fP) acts

as the supremum of (YSm+1
, fSm+1

) and (YP∗ , fP∗). Then (YP , fP) acts as the supremum
of {(YSj

, fSj
) : 1 ≤ j ≤ m+ 1}.

Comment: If needed, the k-star P could be described explicitly as in R33.4.1.

Corollary R33.4.8 Let {(Yj , gj) : 1 ≤ j ≤ m} be a collection of finite-point com-
pactifications of the non-compact T2 space (X, τ ) and let (Z, g) act as the supremum of
{(Yj , gj) : 1 ≤ j ≤ m}. Then (Z, g) is a finite-point compactification of (X, τ ).

Proof: By R5.1.2, for each 1 ≤ j ≤ m, there is a finite star Sj such that (YSj
, fSj

)
is equivalent to (Yj , gj). By R33.4.7 there is a k-star P for (X, τ ) such that the compact-
ification (YP , fP) acts as the supremum of the collection {(YSj

, fSj
) : 1 ≤ j ≤ m}. By

the transitivity of equivalence the k-point compactification (YP , fP) is equivalent to (Z, g),
which is therefore also a k-point compactification.

Comment: This could also be derived in other ways, e.g., by using the representation
of a finite supremum from R3.1.2.

Lemma R33.4.9 Let (X, τ ) be a T3 1
2

space and let {(Yα, fα) : α ∈ ∆} be a non-

empty set of compactifications of (X, τ ). Let (Z, g) be a compactification of (X, τ ). Let
∆∗ be the set of all non-empty finite subsets of ∆ and, for each F ∈ ∆∗, let (YF , fF )
be a compactification which acts as the supremum of {(Yα, fα) : α ∈ F}. Then (Z, g)
acts as the supremum of {(Yα, fα) : α ∈ ∆} if and only if (Z, g) acts as the supremum of
{(YF , fF ) : F ∈ ∆∗}.

Proof: First assume (Z, g) act as the supremum of {(Yα, fα) : α ∈ ∆}. For any F in
∆∗, since F ⊆ ∆, (Z, g) is an upper bound of {(Yα, fα) : α ∈ F} and so (Z, g) ≥ (YF , fF ).
Thus (Z, g) is an upper bound of {(YF , fF ) : F ∈ ∆∗}. Now let (W,h) be an upper bound
of {(YF , fF ) : F ∈ ∆∗}. For every α ∈ ∆, (Y{α}, f{α}) is equivalent to (Yα, fα). Thus
(W,h) is an upper bound of {(Yα, fα) : α ∈ F} and so (W,h) ≥ (Z, g), i.e., (Z, g) acts as
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the least upper bound of {(YF , fF ) : F ∈ ∆∗}. Now assume (Z, g) acts as the supremum
of {(YF , fF ) : F ∈ ∆∗}. Since, for every α ∈ ∆, (Y{α}, f{α}) is equivalent to (Yα, fα),
(Z, g) is an upper bound of {(Yα, fα) : α ∈ ∆}. As in the first half of this proof, an upper
bound (W,h) of {(Yα, fα) : α ∈ ∆} is also an upper bound of {(YF , fF ) : F ∈ ∆∗} and so
(W,h) ≥ (Z, g). Thus (Z, g) acts as the least upper bound of {(Yα, fα) : α ∈ ∆}.

Proposition R33.4.10 Let (X, τ ) be a non-compact, locally compact T2 space and
let {(Yα, fα) : α ∈ ∆} be a non-empty set of finite-point compactifications of (X, τ ). Let
the compactification (Z, g) act as the supremum of {(Yα, fα) : α ∈ ∆}. Then there is a
normal basis Z for (X, τ ) such that (ω(Z), ιZ ) is equivalent to (Z, g).

Proof: Let ∆∗ be the set of all non-empty finite subsets of ∆ and, for each F ∈ ∆∗,
let (YF , fF ) be a compactification which acts as the supremum of {(Yα, fα) : α ∈ F}. By
R33.4.8 each (YF , fF ) is a finite-point compactification and so by R5.1.2 there is a finite
star SF for (X, τ ) such that (YSF

, fSF
) is equivalent to (YF , fF ). Next it will be shown

that {Z(SF ) : F ∈ ∆∗} has the directed set property under containment. Let F,H ∈ ∆∗.
F ∪ H is also in ∆∗ and (YF∪H , fF∪H) is an upper bound of {(Yα, fα) : α ∈ F} and so
(YF∪H , fF∪H) ≥ (YF , fF ). Similarly (YF∪H , fF∪H ) ≥ (YH , fH) and by equivalence the
same relationships hold for the compactifications determined by SF∪H , SF , and SH . By
R33.2.5 and R33.3.8 Z(SF∪H ) ⊇ Z(SF ) ∪ Z(SH) and the claim is verified. By R9.2.1
Z = ∪{Z(SF ) : F ∈ ∆∗} is a normal basis for (X, τ ). Because of R33.3.9 the hypothesis of
R9.Add.5 holds and so (ω(Z), ιZ) acts as a supremum for {(ω(Z(SF )), ιZ(SF )) : F ∈ ∆∗}
and by equivalence for {(YF , fF ) : F ∈ ∆∗}. By R33.4.9 (ω(Z), ιZ) acts as the supremum
of {(Yα, fα) : α ∈ ∆} and so (ω(Z), ιZ ) is equivalent to (Z, g).

In other words, the previous proposition says that a supremum of finite-point com-
pactifications must be a Wallman compactification.

Albert J. Klein 2023
http://www.susanjkleinart.com/compactification/
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