Normal Bases for Finite-Point Compactifications

In [4] it is shown that every finite-point compactification of an infinite discrete space
is equivalent to a compactification generated from a normal basis. Here that result and the
technique used to prove it are generalized to finite-point compactifications of an arbitrary
non-compact 15 1 space. It is also shown that a supremum of finite-point compactifications
must be a Wallman compactification.

Note that all compactifications considered are T> compactifications and that a non-
compact space has a finite-point compactification if and only if it is locally compact and
T». For A C X, A denotes the closure of A in X.

Let (X,7) be a non-compact T topological space. A pairwise disjoint family {G; :
i=1,...,n} of open sets whose union has a compact complement K such that K UG; is
not compact for each ¢ will be called an n-star of (X, 7). In what follows, when an n-star
is given as a pairwise disjoint family {G; : i = 1,...,n}, the compact set X — U ;G; will
be implicit unless needed. In R5.1.1 it is shown that a 75 space with an n-star is locally
compact and n-stars determine n-point compactifications.

When (X, 7) is discrete, infinitely many examples of n-stars are provided by n-
compatible equivalence relations. See R5.1.9 and R5.1.10. For an arbitrary non-compact
locally compact Ty space (X,7), {X} is a 1-star, which determines the one-point com-
pactification. In IR both {(—o00,0),(0,00)} and {—o00,—1)),(1,00)} are a 2-stars, which
determine equivalent two-point compactifications.

The Normal Basis Generated by an n-star

Definition R33.1.1 Let {G; : i = 1,...,n} be an n-star for the non-compact 1%
topological space (X, 7) and let S C X. Let A C {1,2...,n}. S is associated with A if
and only if i € A implies SN G; has compact closure in X and i ¢ A implies (X —5)NG;
has compact closure in X.

When (X, 7) is discrete, this definition reduces to R5.3.1.

Lemma R33.1.2 Let {G; :i=1,...,n} be an n-star for the non-compact T topo-
logical space (X,7) and let S C X. Assume S is associated with A; and with As, both
subsets of {1,2,...,n}. Then A; = Ay

Proof: Let K = X — U G;. First note that K U G; is closed for each 1 < ¢ < n
because its complement is the open set U{G; : j # i}. Now let i € A; so that SN G; has
compact closure in X. Suppose i ¢ As so that (X —.S) N G; also has compact closure in
X. Since G; = (SN G;) U ((X — S)NG;), G; is the union of two compact sets and so
compact. Since K U G; is closed, G; C K U G;. Then the closed set K U G; is contained
in K UG;, a union of two compact sets, so that K U G; is compact. But by definition of
an n-star K U G; is not compact, a contradiction. Thus i € Ay. Similarly As C Aj.

Lemma R33.1.3 Let (X, 7) be a topological space, let S C X, and let G € 7. Then
SNG=SnNaG.

Proof: Since SN G is a closed set containing SNG, SNG C SNG. Nowletz € SNG
and let z € O € 7. Pickt € (SNG)NO. Then t is in S and in the open set GNO so that
thereis sin SN(GNO)=(SNG)NO. Thusz € SNG.

Lemma R33.1.4 Let {G; :i=1,...,n} be an n-star for the non-compact T topo-
logical space (X, 7) and let S C X. Then




i) S is associated with {1,2,...,n} if and only if S is compact.
ii) If S is associated with A, then X — S is associated with {1,2,...,n} — A.
iii) If S is associated with A, S is also associated with A.

Proof: Let K = X — U ;G; and write X as K U (U ,G;) so that one can write
S=(NK)U(U-,(SNG;) and S=SNK U (UL, SNG;). Since K is compact, so is
SN K C K. Thus, if S is associated with {1,2,...,n}, the definition and second equation
show that S is compact. Conversely, if S is compact, for 1 <i <n, SNG; C S and so has
compact closure. Thus i) holds. Part ii) follows from the definition because X — (X —S) =

S. For part iii) assume S is associated with A. If i € A, because SNG; = SNG; is
compact, SN G; has compact closure in X. If i ¢ A, because X —S C X S, (X —S)NG;
has compact closure in X. The conclusion follows from the definition.

Lemma R33.1.5 Let {G; :i=1,...,n} be an n-star for the non-compact T topo-
logical space (X, 7) and let S, T be subsets of X. Assume S is associated with A and T is
associated with I'. Then SUT is associated with ANT and SNT is associated with AUT.

Proof: For i € ANT, because S N G; and T'N G; both have compact closure in X, so
does (SUT)NG;. Fori¢ ANT, at least one of (X —S)NG;, (X —T)NG; has compact
closure in X, which implies that (X — (SUT))NG; = (X —S)N (X —T)) NG, does
as well. Thus the first assertion holds. For i € A UT, at least one of SN G;,T N G; has
compact closure in X so that (SNT)NG,; does also. For i ¢ AUT, both (X —S5)NG; and
(X —=T)NG; have compact closure in X so that (X —(SNT))NG; = (X=-S)U(X-T))NG;
does as well. Thus the second claim holds.

Definition R33.1.6 Let S = {G; : i = 1,...,n} be an n-star for the non-compact
T topological space (X, 7). Z(S) is defined to be

{Z C X :Zis 71— closed and Z is associated with some A C {1,...,n}}.

The next lemma shows that Z(S) has the first three properties in P3.1, the definition
of a normal basis. By R33.1.4i Z(S) contains all finite subsets of X and so is a non-empty
family of closed sets.

Lemma R33.1.7 Let S = {G; : i = 1,...,n} be an n-star for the non-compact 75
topological space (X, 7). Then

i) Z(8S) is a base for the closed sets of (X, 7).

ii) Z(S) is closed under finite unions and intersections.

iii) If £ is closed in (X, 7) and x ¢ E, then there is Z € Z(S) such that x € Z and
ZNE=4.

Proof: Because the closed sets are closed under finite unions and intersections, part
ii) is immediate from R33.1.5. Let E be closed and x ¢ E. By R33.1.4i {z} € Z(S)
and so iii) holds. As noted above (X, 7) is locally compact and so there is O open with
z € O C O C X — E, where O is compact. By the first two parts of R33.1.4 X — O is
associated with () and so is in Z(S). Since x ¢ X — O and E C X — O, part i) holds.

Verifying the fourth requirement is done in the next 2 lemmas.

Lemma R33.1.8 Let S = {G; : i = 1,...,n} be an n-star for the non-compact
T, topological space (X, 7). Let Z1,Zs be in Z(S) with Z; associated with A;. Assume
ZlﬂZQ :@ Then A1UA2: {1,,7%}



Proof: By R33.1.4i ) is associated with {1,...,n} and by R33.1.5 Z1; N Z5 is associated
with A1 U As. The conclusion follows from R33.1.2.

Lemma R33.1.9 Let § = {G; : i = 1,...,n} be an n-star for the non-compact
T, topological space (X, 7). Let Z1,Zs be in Z(S) with Z; associated with A;. Assume
Z1 N Zy = (. Then there are C,D € Z(S) such that CUD = X, Z; C X — C, and
Zy C X —D.

Proof: Let K be the complement in X of U} ;G; so that X = KUG U --- UGy,
K N Z; is a compact subset of the open set X — Z5. As noted above, (X, 7) is locally
compact and so there is Oy € 7 with Og compact such that K N Z; C Oy C Oy C X — Zs.
For each ¢ € Ay, Z1 NG, is a compact subset of Z;, which is contained in the open
set X — Z,. Again by local compactness, there is O; € 7 with O; compact such that
Z71NG; C0O; CO;, CX — Zy. Fori ¢ A1, by the previous lemma ¢ € As and so Z2 N G;
is compact. By local compactness, since Zo N G; C Zy C X — Zj, there is O open with
O_;‘ compact such that Zo NG; C OF C O_;‘ C X — Z;. Similarly, for the compact Zs N K,
there is Og open with 0_3 compact such that Zo N K C Of C 0_3 C X — Z;. Now for
igéAl, let O; :(X—O_?)ﬂGiﬂ(X—O_S) .

Next define C' = X — U ,0; and D = U ,0;. Clearly C and D are closed sets with
C UD = X. Note that, for i ¢ Ay, Z1 C (X —O}) N (X — O7F) so that Z; NG; C O;. By
construction Z; N K C Op and, for i € Ay, Z1NG; CO;. Zy = (Z1NK)U (U, (Z1NGy))
and so Z1 C U O; = X — C. To see that Zo C X — D, first note that by construction
Zo C X —Op and, for i € Ay, Zo C X — O;. For i ¢ Ay, it is claimed that Zs C X -0,
as well. Deny that and let € Z5 with € O;. Since O; C X — 0_3 C X — O which
is closed, O; € X — O} C X — (ZaNK). Since z ¢ ZoNK and x € Z3, v ¢ K. Also
0, C G; € K UG, which is closed. Thus O; C K UG,;. Because x ¢ K, x € G;. Since
T € Zy,x € ZoNG; CO;. But O; C X—O_;‘ C X —O; which is closed, so that 0, C X-0;
and = ¢ O}, a contradiction. In summary, Zs C N o(X — 0;) = X — D.

To finish, it is necessary to show that both C' and D are in Z(S). First note that, for
i € AU{0}, O; is compact and so by R33.1.4i O; and O; are associated with {1,2,...,n}.
By R33.1.4ii X — Oy is associated with (). Thus X — O; and O; are both in Z(S). Now
suppose i ¢ Aj. O; C G; and so, for j # i, O;NG; = 0, which is compact. (X —0;)NG; =
(O_;‘ UX -aG;)J 0_3) NG; COrU 0_3, which is the union of two compact sets. Thus O; is
associated with {1,2,...,n}—{i}. By R33.1.4iii O; is also associated with {1,2,...,n}—{i}
so that O; is in Z(S). By R33.1.4ii X — O; is associated with {i} and so is in Z(S). Since
Z(8) is closed under finite unions and intersections, D = U?_,0; and C = N (X — O;)
are both in Z(S), as required.

Corollary R33.1.10 Let S = {G; : i = 1,...,n} be an n-star for the non-compact
T5 topological space (X, 7). Then Z(S) is a normal basis for (X, 7).

Proof: R33.1.7 and R33.1.9 show that Z(S) has the properties in P3.1, the definition
of a normal basis.

When (X, 7) is discrete, R33.1.10 reduces to R5.3.3.

The Compactification Generated by Z(S)
Given {G; : i =1,...,n} an n-star for the non-compact T, topological space (X, 7),
let p1,...,pn be n distinct objects not in X, let Y = X U {p1,...,pn}, let o be the set
{OCY : :0ONX € r7and p; € O = (X —0)NG; has compact closure in X}, and let
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f:X =Y by f(z) =z. In [4] it is noted that o is a topology and (Y, f) is an n-point T
compactification of (X, 7). (Y, f) will be called the n-point compactification determined
by the n-star. The argument that (Y, o) is compact and T, uses only the T property of
X, although that is not emphasized in [4].

Definition R33.2.1 Let S = {G; : i = 1,...,n} be an n-star for the non-compact
T, topological space (X, 7) and let 1 < i <n. The set F; is defined by

Fi=A{Z € Z(S) : Z is associated with some A C {1,...,n} — {i}}.

To avoid subscript ambiguity, in what follows the point-filter of x in a space will be
denoted F(x). The next lemma is a generality used in what follows.

Lemma R33.2.2 Let (X,7) be a Tj 1 space with normal basis Z and let H be a
Z-filter. Assume C is a compact subset of X and C € ‘H. Then there is = € X such that
H C F(z).

Proof: The set {CNZ : Z € H} is contained in H and is a family of closed subsets
of C. Because H is closed under finite intersections and () ¢ H, {C N Z : Z € H} has the
finite intersection property. Since C' is compact, there is x in N{C' N Z : Z € H}. For any
ZeH,xe€ZNC and so Z € F(x), i.e., H C F(x).

Lemma R33.2.3 Let S = {G, : i = 1,...,n} be an n-star for the non-compact T4
topological space (X, 7) and let 1 < ¢ <n. Then

i) Fi is a Z(S)-filter.

ii) F; is a Z(S)-ultrafilter.

iii) F; is not a Z(S) point-filter.

iii) For 1 < j <n with ¢ # j, F; # F;.

Proof: X is associated with () and so is in F;. Also ) is associated with {1,...,n} and
so is not in F;. Thus F; is a non-empty collection of non-empty Z(S)-sets. Let Z1, Zs be
in F; with Z; associated with A; and Z, associated with A,. By definition ¢ ¢ A; U As.
By R33.1.5 Z1 N Z3 is associated with Ay U As and so Z; N Zy € F;. Next let Z C W,
where Z € F; and W € Z(S) is associated with I". If i € T, ZN G; € W NG, which is
compact, so that i is in the set associated with Z, a contradiction. Thus i ¢ T' so that
W € F; and the first assertion holds. For part ii), let G be a Z(S)-filter with F; C G. Let
Z € G be associated with A and suppose Z ¢ F;, i.e., i € A. Note that G; is associated
with {1,...,n} — {i}, as is G; by R33.1.4iii, so that G; is in F; and so in G. Z NG, is
in G and by R33.4.5 it is associated with {1,...,n}. By R33.1.4i Z N G; is compact. By
R33.2.2 there is x € X such that G C F(x). By local compactness there is O € 7 with
x € O and O compact. By parts i) and ii) of R33.1.4, X — O is associated with () so that
X -0 € F;. But X — O ¢ F(z), which contradicts G C F(x). Thus Z € F; and ii) holds.
For iii), let € X. Since {x} is associated with {1,...,n}, {z} € Z(S), {z} € F(x), and
{z} ¢ F;. Thus F; # F(x). Finally, let j # i with 1 < j <n. As above, G; is in F; and is
associated with {1,...,n} — {i}. By definition G; ¢ F; and so F; # F;.

Lemma R33.2.4 Let S = {G, : i = 1,...,n} be an n-star for the non-compact T4
topological space (X, 7). Let H be a Z(S)-ultrafilter. Then either there is 1 < i < n such
that H = F; or ‘H is a Z(S) point-filter.

Proof: Assume H # F; for all 1 < ¢ < n. For each i, since H is a Z(S)-ultrafilter,
‘H cannot be a proper subset of F; and so there is Z; associated with A; with Z; € H
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and Z; ¢ F;, ie,i € A;. Let Z =N ,Z;. Then Z is in H and Z is associated with
ur A, ={1,...,n} by R33.1.5. By R33.1.4i Z is compact and by R33.2.2 there is x € X
such that H C F(zx). Since H is a Z(S)-ultrafilter, H = F(z).

The next result generalizes R5.3.8.

Proposition R33.2.5 Let S = {G; : i = 1,...,n} be an n-star for the non-compact
T, topological space (X, 7) and let (Y, f) be the n-point compactification determined by
S. Then (Y, f) is equivalent to (w(2(S)),tz(s))-

Proof: Define ¢ : ¥ — w(Z(S)) by ¢(z) = F(x) for x € X and ¢(p;) = F;. It
follows easily from R33.2.3 and R33.2.4 that ¢ is a bijection. By definition ¢ o f = 1z(s)-
Thus it remains to show that ¢ is continuous. For that, because {Z“ : Z € Z(S)} is a
base for the closed sets of w(Z(S8)), it is sufficient to show that ¢~1[Z%] is closed in Y for
every Z € Z(8). Let Z be in Z(S) be associated with A and let A =Y — ¢~1[Z%]. First,
r € X—Zifand only if Z ¢ F(x), i.e., ¢(x) ¢ Z%,ie., x ¢ ¢~ 1[Z2%]. Thus ANX = X —Z,
which is open in X, and X — A = Z. Next p; € A if and only if ¢(p;) ¢ Z%, i.e., Z ¢ F;,
i.e., j € A. Thus p; € A implies (X — A) N G; = Z N G; has compact closure in X. By
the definition of the topology for Y, A is open in Y so that X — A = ¢71[Z%] is closed as
required.

The next corollary could also be expressed by saying every finite-point compactifica-
tion of a 731 space is a Wallman compactification.

Corollary R33.2.6 Let (X, 7) be a non-compact T4 1 space with a finite-point com-
pactification (S, g). Then (S, g) is equivalent to a compactification generated from a normal
basis.

Proof: The given compactification is an n-point compactification for some n. By
R5.1.2 there is S = {G; : i = 1,...,n} an n-star for X such that (Y, f), the n-point
compactification determined by S, is equivalent to (.5, g). By the previous proposition and
transitivity, (5, g) is equivalent to (w(2(S)), 1z (s))-

Ordering of Finite-Point Compactifications

The first proposition on equivalence is essentially a corollary of a result of Magill [1].
It will subsequently be refined for ordered but non-equivalent cases.

Proposition R33.3.1 Let S = {G; :i=1,...,n} and R ={0; : i =1,...,n} be
n-stars for the non-compact 75 topological space (X, 7). Let K1 = X — U ;G;. Then
(W(Z2(8)),tz(s)) is equivalent to (w(Z(R)),tz(r)) if and only if there is o, a permutation
of {1,...,n}, such that (K; UG;) N (X — Oy(;)) is compact for every 1 <i < n.

Proof: Let (Ys, fs) and (Yr, fr) be the n-point compactifications determined by S,
R respectively. By R5.1.5 (Ys, fs) is equivalent to (Yr, fr) if and only if there is o, a
permutation of {1,...,n}, such that (K; UG;)N(X —Og(;)) is compact for every 1 < i < n.
By transitivity and R33.2.5 the conclusion holds.

Comment: The proposition is expressed asymmetrically with regard to S and R.
Reversing their roles would produce a permutation p such that (J U O;) N (X — G ;) is
compact for every 1 < ¢ < n, where J = X — U ;0,. By using the uniqueness of the
connecting map and details of its construction, it can be shown that p = ¢~!. That will
not be needed in what follows.

The next lemma applies to any T, compactification, not just finite-point examples. It
is undoubtedly known but is recorded here for completeness and ease of reference.
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Lemma R33.3.2 Let (X,7) be a T3, space with T compactifications (Y, f) and
(Z,g). Assume ¢ : Z — Y is continuous with ¢ o g = f. Then ¢[Z — g[X]] =Y — f]X].

Proof: As usual ¢ is onto from general considerations and by hypothesis ¢(g(x)) is in
fIX] for every z € X. Thus Y — f[X] C ¢[Z — g[X]]. Now let z € Z — g[X] and suppose
¢(z) = f(z) for some x € X. By the density of g[X] in Z, there is a net {z,} in X such
that {g(x)} converges to z. Since ¢ is continuous and ¢(g(z,)) = f(xa), the net {f(xq)}
converges to ¢(z) = f(z). Because f: X — f[X] is a homeomorphism, {z,} converges to
x in X. By the continuity of g, {g(z4)} converges to g(z). Since limits are unique in 75
spaces, z = g(z), which contradicts the choice of z. Thus ¢[Z — g[X]|] C Y — f[X].

Proposition R33.3.3 Let S = {G; : i = 1,...,n} be an n-star for the non-compact
T, topological space (X,7) and let R = {O; : i = 1,...,m} be an m-star for the same
space. Let K = X — UZ,0;. Then (w(Z(S5)),tzs)) < (W(2(R)),tz(r)) if and only if
there is an onto map 7 : {1,...,m} — {1,...,n} such that, for every 1 < i < n and
jer Y{i}], (X —G;) N (K UO;) is compact in X.

Proof: Let (Ys, fs) and (Yr, fr) be the m-point, respectively m-point, compact-
ifications determined by & and R. Notationally, assume Ys = X U {p1,...,pn} and
Yr = X U{q,...,qn}. By transitivity and R33.2.5, the proposition holds if it can be
verified for these representatives. First assume r exists. Define ¢ : Yr — Ys by ¢(z) = =
and ¢(q;) = pr)- By definition ¢ o fr = fs and, since r is onto, ¢ is onto. It remains to
check that ¢ is continuous. Let O be open in Ys. By definition of ¢, ¢~ [O]NX = ON X,
which is in 7. Let ¢; € ¢~ 1[O]. To see that (X — ¢~1[0]) N O; has compact closure in
X, first note that ¢(q;) = pr;j) is in O and so (X — O) N G,;) has compact closure in
X. By hypothesis for this part, (X — G,;)) N (K U Oy) is compact in X. It is suffi-
cient to verify that (X —¢~'0]) NO; C ((X —O0) N G.(j)) U (X — Gr;y) N (K UOy)).
Let z € (X —¢71O))NO;. Ifz € G,(j), by definition of ¢, x € (X — O) N G, ;). If
r & G,(j, then, since v € O; C (K UOy), x € (X — G,(;)) N (K UO;). Thus the needed
containment holds. Conversely, assume 1 : Yg — Ys is continuous with ¥ o fr = fs.
In this situation v is onto and, by R33.3.2, maps {q1,...,¢n} onto {p1,...,pn}. Define
r:{l,...,m} —{1,...,n} by r(j) =i where ¢(q;) = p;. Clearly r is onto. Let 1 <i <n
and j € r~1[{i}] so that ¢(q;) = p;. By definition of the topology on Ys, G; U{p;} is open
in Ys and so ¥ 1[G; U {p;}] is open in Yr. By definition of fz and gs, ¥(z) = z and so
X — oG U{pi}] = X — G;. Since ¢; € v 1G; U{pi}], (X — G;) N O; has compact
closure in X. Because K U O; is closed in X and K is compact, (X — G;) N (K UO;) is
compact in X.

In the last proposition the proof that the existence of r is sufficient does not make
clear the role of its surjectivity. It guarantees that the defined ¢ is onto, of course, but that
would follow from general considerations if ¢ could be shown continuous without using the
fact that r is onto. The next lemma and proposition, which are a bit of a digression, show
that the hypothesis cannot be true if r is not onto.

Lemma R33.3.4 Let R ={0; :i=1,...,m} be an m-star for the non-compact T
space (X, 7). Let (Yr, fr) m-point compactification determined R. Notationally, assume
Yr =XU{q,...,qn} Let O € 7 and assume that O U {q1,...,q,} is open in Yr. Then
X — O is compact in X.

Proof: X—-O0=X-0=(KN(X-0)U(U™,0,N (X — 0O), where K = X —U",0;.
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By hypothesis each term in that finite union is compact and so X — O is compact.

Proposition R33.3.5 Let S = {G; : i =1,...,n} be an n-star for the non-compact
T, topological space (X,7) and let R = {O; : i = 1,...,m} be an m-star for the same
space. Let K = X —U™,0;. Assume r: {1,...,m} — {1,...,n} is not onto. Then there
is 1 <i<mnandjer '[{i}] such that (X — G;) N (K UO;) is not compact in X.

Proof: Let G = U{G; : v~ 1[{i}] # 0}, an open set in X. If one assumes the conclusion
is false, then, for every 1 < j <m, (X — G) N O, has compact closure in X because it is a
subset of (X — G,(;)) NO;. Thus GU{q1,...,qn} is open in Y. By the lemma X — G is
compact. Because r is not onto, there is 1 < k < n such that r~1[{k}] = 0. By definition
of G and the disjointness property of the n-star, G, C X — G. For J = X — U ;G;, the
closed non-compact set J UG} is contained in the compact set JU(X —G), a contradiction.

This proposition shows that R33.3.3 can be simplified as follows.

Corollary R33.3.6 Let S = {G; : ¢ = 1,...,n} be an n-star for the non-compact
T, topological space (X,7) and let R = {O; : i = 1,...,m} be an m-star for the same
space. Let K = X — UZ,0;. Then (w(Z(S5)),tz(s)) < (W(2(R)),tz(r)) if and only if
there is a map r: {1,...,m} — {1,...,n} such that, for every 1 <i < mn and j € r—1[{i}],
(X —Gi) N (K UO;y) is compact in X.

Proof: The necessity of the condition is immediate from R33.3.3. The sufficiency
follows from R33.3.5 and R33.3.3.

Lemma R33.3.7 Let S = {G; : i = 1,...,n} be an n-star for the non-compact 75
topological space (X, 7) and let R = {O; : i =1,...,m} be an m-star for the same space.
Assume there is a map r : {1,...,m} — {1,...,n} such that, for every 1 < i < n and
jer {i}], (X — G;) N (K UO;) is compact in X, where K = X —U™,0;. Let Z be
associated with A relative to S. Then Z is associated with 7~ 1[A] relative to R.

Proof: Let j € {1,...,m} and let i = r(j). If j € r~1[A], i € A so that ZNG;
has compact closure in X. ZNO; = (ZN0O; NG;)U(ZNO; N (X —Gy)). The first
term of that union is contained in Z N G; and the second is contained in the compact
(X —G;)N (K UOy). Thus ZN O, has compact closure in X. If j ¢ r~![A], i ¢ A and so
(X — Z) NG, has compact closure in X. Now proceed exactly as before: (X —Z)N0; =
(X—-2)N0O;NG)U (X —Z)N0O;N(X —Gy)). The first term of that union is contained
in (X — Z) N G; and the second is contained in the compact (X — G;) N (K U O;).

Corollary R33.3.8 Let S = {G; : i = 1,...,n} be an n-star for the non-compact 7%
topological space (X, 7) and let R = {O; : i =1,...,m} be an m-star for the same space.
Assume (w(Z(S5)),tz(s)) < (W(Z(R)),1z(r)). Then Z(S) C Z(R).

Proof: By R33.3.6 the hypothesis of R33.3.7 holds. The conclusion follows from the
definition of the normal basis determined by a k-star and R33.3.7.

In the next proposition superscript notation will be used to distinguish filters in the
two normal bases, Z(S) and Z(R).

Proposition R33.3.9 Let S = {G; : i = 1,...,n} be an n-star for the non-compact
T, topological space (X,7) and let R = {O; : i = 1,...,m} be an m-star for the same
space. Assume (w(Z(S)),tz(s)) < (W(Z(R)),tz(r)). Then, for every F* in w(Z(R)),
FRNZ(S) is in w(Z(S)).

Proof: Let F®(z) be the Z(R) point-filter of . By R33.3.8 Z(S) C Z(R) and so by
R9.1.1ii FR(z)N Z(S) = FS(x), the Z(S) point-filter of z. Now assume F7 is a non-point
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Z(R)-ultrafilter. By R33.2.4 F* = FF for some j € {1,...,m}. By R33.3.6 there is a
map 7 so that the hypothesis of R33.3.7 holds Let i =r(j). Let Z in F¥ be associated with
A. By definition R33.2.1 A C{1,...,n} —{i} and Z € Z(S). By R33.3.7 Z is associated
with r~1[A] relative to Z(R) and so Z € Z®) by definition. Note that j ¢ r~1[A] because
r(j) =i is not in A. By R33.2.1 Z € F* N Z(S). Thus FSC FRNZ(S). The latter is a
Z(8)-filter by R9.1.1i and F? is a Z(S)-ultrafilter by R32.2.3ii. Thus F° = FX N Z(S).

(2

Suprema of Finite-Point Compactifications

Proposition R33.4.1 Let S = {G; : i = 1,...,n} be an n-star for the non-compact
T, topological space (X,7) and let R = {O; : i = 1,...,m} be an m-star for the same
space. Let P = {G; N O; : G; N Oj is not compact in X}. Then P is a k-star for (X, 7)
for some k, with max{m,n} <k < mn.

Proof: Let P = {(i,7) : G;NO; : G; N Oj; is not compact in X } and let k = |P|. Since
PC{1,...,n} x{1,...,m}, k <mn. Clearly k = |P|. By definition each G; N O; is open
and, if (4, 7) # (1, 5), (GiNO;)N(G,NOy) is empty. Thus P is a pairwise disjoint collection
of open sets. Now let L = X —U{G;N0O; : (i,j) € P}, aclosed set. For K = X—-U! ;G; and
J = X—-U7L,0y, it will be shown that L C KUJU(U{G; N O; : G; N Oy is compact in X}),
a finite union of compact sets. Let x € L and suppose z ¢ K U J. Then there exist 1, j
such that x € G; N O;. Since x € L, (i,7) ¢ P so that G; N O; is compact. Thus the claim
is verified so that L is compact. Now let (i,5) € P. LU (G; N O;) is closed because its
complement is open by pairwise disjointness. Thus the non-compact G; N O; is a subset of
LU (G; N0y ) and so LU (G; N O;) must also be non-compact. By definition P is a k-star.
Finally let 1 < ¢ < n and suppose, for every 1 < j < m, G; N O; is compact. Because
Gi = (JNG;) U (UJL(GiNOy)), G, =JNG;U (UL, G N Oy) so that G is compact. But
the non-compact closed set K U G; is contained in the compact K U G;, a contradiction.
Thus there is 1 < j < m such that (i,5) € P and so k = |P| > n. Similarly & > m.

For results through R33.4.5 the following notation will be used: Let (X, 7) be a non-
compact 15 topological space with n-star S = {G; : i =1,...,n} and m-star
R={0;:i=1,...,m}. Let P={(i,7) : G; N Oy is not compact in X} and let
P ={GinNO0O;j: (i,j) € P}. The compactifications determined by S, R, and P will be
denoted (Ys, fs), (Yr, fr), and (Yp, fp) respectively with Ys = X U {s1,...,s,},

Yr =X U{ry,...,rm}, and Yp = X U{p( ;) : (4,7) € P}.

Proposition R33.4.2 Let S = {G; : i = 1,...,n} be an n-star for the non-compact
T, topological space (X,7) and let R = {O; : i = 1,...,m} be an m-star for the same
space. Let P = {G; N O; : G;N O, is not compact in X} Then (Ys, fs) < (Yp, fp) and
(Yr, fr) < (Yp, fP).

Proof: Define os : Yp — Ys by os(z) = x for v € X and 0s(p(; j)) = si- By definition
os o fp = fs. Now let G be open in Yg It is easy to check that X N O’ Gl = XnaG,
which is open in X. Likewise, X — 05'[G] = X — G. If pi ;) € o5 [G], s; € G and
(X —05'[G]) N (G; N O;) C (X — G)N Gy, which has compact closure in X. Thus
05'[G] is open in Yp and os is continuous. By definition (Ys, fs) < (Yp, fp). Similarly,
(Yr, fr) < (Yp, fp).

The next two lemmas simplify the proof of the subsequent proposition.

Lemma R33.4.3 Let Q = {W, : i = 1,...,j} be a j-star for the non-compact 15




topological space (X, 7) and let (Yo, fo) be the compactification determined by Q, where
Yo=XU{q,-..,q}. Let C be a compact subset of X. Then

i) For 1 <t <j, Wy U{q} is open in Ys.

ii) For 1 <t <j, (X —C)U{q} is open in Ys.

Proof: Let 1 <t < j. (W U{q:}) N X = W,, which is in 7 by definition of a
j-star, and (X — (W U {q:})) N Wy = 0, which is compact. By definition W; U {¢:} is
open in Yo and i) holds. Similarly (X — C)U{¢:}) N X = X — C, an open set, and
(X — (X = C)u{g}) n W, = C N W, which is contained in the compact C' and so has
compact closure in X. By definition (X — C) U {q;} is open in Y5 and ii) holds.

Lemma R33.4.4 Let S = {G; : ¢ = 1,...,n} be an n-star for the non-compact
T, topological space (X,7) and let R = {O; : i = 1,...,m} be an m-star for the same
space. Let (Z,g) be a compactification of (X, 7) with continuous maps s : Z — Ys and
YR : Z — Yg such that s o g = fs and Yg 0 g = fr. Let z € Z — g[X] with ¥s(z) = s,
and g (z) = rp. Then G, N Op does not have compact closure in X.

Proof: Deny the conclusion. Since g[X] is dense in Z, there is {z,}, a net in X, such
that {g(x,)} converges to z. By continuity {¢s(g(x))} converges to ¥s(z) = s, in Ys
and {Yr(g(zq))} converges to ¥r(z) = rp in Yg, i.e., {xo} converges to s, in Ys and to
rp in Yr. By the definitions of convergence and directed set, since G, U{s,} and O, U {r}
are open in Ys, Yr respectively, there is ag such that a > «¢ implies x, € G, N Op. By
the assumed compactness of Gy N Oy, the net {4 }a>a, has a subnet {z,,} converging
to some z in G, N O, € X. By continuity of g, {g(za,)} converges to g(x) in Z. Since
{9(za,)} is a subnet of {g(za)}, {g(2a,)} also converges to z. Since limits in the T space
Z are unique, z = g(z), which contradicts the hypothesis for z.

Proposition R33.4.5 Let S = {G; : i = 1,...,n} be an n-star for the non-compact
T, topological space (X,7) and let R = {O; : i = 1,...,m} be an m-star for the same
space. Let P = {G;NO; : G; N O; is not compact in X}. Let (Z, g) be a compactification
of (X,7) with (Ys, fs) <(Z,g) and (Yr, fr) < (Z,¢g). Then (Yp, fr) < (Z,g).

Proof: By hypothesis there are continuous maps ¢s : Z — Ys and ¢Yr : Z — Yg
such that ¥s og = fs and g o g = fr. Define ¢ : Z — Yp as follows: For z € g[X]
with z = g(z), let ¢(g(x)) = x. For z € Z — g[X], by R33.3.2 ¢s(z) = s; for some
1 <i<nand ¢Yr(z) =r; for some 1 < j < m. By R33.44 (i,j) € P and so define
#(2) = p(i,j)- By definition ¢ o g = fp. To see that ¢ is continuous, let G be open in Yp.
It is easy to check that ¢~[G] N g[X] = g[X N G]. Since X is locally compact, g[X] is
open in Z and so the homeomorphism g : X — ¢[X] is an open map into Z. By definition
of the topology on Yp, X NG is open in X. Thus ¢~1[G] is a neighborhood of every
point in ¢~1[G] N g[X]. Now let z € ¢~1[G] — g[X] with ¥s(z) = s; and Yr(z) = rj.
Then ¢(z) = p(,;) is in G and so (X — G)N(G; NO;) is compact in X. By R33.4.3
{si}UG; and {s;} U (X — (X — G) N (G; N O;)) are open in Ys. Similarly {r;} U O; and
{rj}U(X — (X —G)N(G;NO,)) are open in Y. Let

V=({s}UuG)N{s}U(X - (X-G)N(G;N0O,))) and
W=({r;}u0;)n({r;} U (X - (X -=G)N(GiNO;)).

V is open in Ys and W is open in Y and so by continuity 5" [V]N 5! [W] is open in Z.
Because ¢5(2) = s; and Yr(z) =715, 2 € @Dgl[V] ﬂ@bﬁl [W]. Now let w € @Dgl[V] ﬂ@bﬁl [W].
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If w € Z — g[X], because the only element of Ys — X in V is s;, ¥s(w) = s;. Similarly,
Yr(w) = r; and so by definition ¢(w) = p; ;) € G. Thus w € ¢~ G]. Now assume
w = g(x) for some x € X. ¢¥s(g(z)) = fs(zr) = x € V and similarly ¢z (g(z)) =2 € W so
that z € (G;NO;) N (X — (X —G)N (G N O;j)). Then z must be in G because otherwise
z would be in (X — G) N (G;NO;). To summarize, z € ¢5'[V] N [W] C ¢~ 1G] so
that ¢~1[G] is a neighborhood of 2. Since ¢~ ![G] is a neighborhood of each of its points,
it is open and ¢ is continuous as required.

Corollary R33.4.6 Let S = {G; : i = 1,...,n} be an n-star for the non-compact 7%
topological space (X,7) and let R = {O; : i =1,...,m} be an m-star for the same space.
Let P = {G; N O; : G;N O, is not compact in X}. Then the compactification (Yp, fp)
acts as the supremum of (Ys, fs) and (Yr, fr).

Proof: R33.4.2 shows it is an upper bound and R33.4.5 shows it is the least upper
bound.

Corollary R33.4.7 Let {S; : 1 < j < m} be a finite collection of finite stars for the
non-compact T topological space (X, 7). Then there is a k-star P for (X, 7) such that the
compactification (Yp, fp) acts as the supremum of the collection {(Ys,, fs;) : 1 < j < m}.

Proof: By induction: The claim is trivial for m = 1 and true for m = 2 by R33.4.6.
If it holds for any collection of size m, let a collection of size m + 1 be given. Apply
the induction hypothesis to obtain P* such that compactification (Yp«, fp«) acts as the
supremum of {(Ys;, fs;) : 1 < j < m}. Apply R33.4.6 to obtain P such that (Yp, fp) acts
as the supremum of (Ys,, ., fs,..,) and (Yp«, fp+). Then (Yp, fp) acts as the supremum
of {(ng,fsj) 1 <j<m+1}.

Comment: If needed, the k-star P could be described explicitly as in R33.4.1.

Corollary R33.4.8 Let {(Yj,g;) : 1 < j < m} be a collection of finite-point com-
pactifications of the non-compact T space (X, 7) and let (Z,g) act as the supremum of
{(Yj,g9;) :1 <j <m}. Then (Z,g) is a finite-point compactification of (X, 7).

Proof: By R5.1.2, for each 1 < j < m, there is a finite star S; such that (Ys,, fs;)
is equivalent to (Y}, ¢g;). By R33.4.7 there is a k-star P for (X, 7) such that the compact-
ification (Yp, fp) acts as the supremum of the collection {(Ys,, fs,) : 1 < j < m}. By
the transitivity of equivalence the k-point compactification (Yp, fp) is equivalent to (Z, g),
which is therefore also a k-point compactification.

Comment: This could also be derived in other ways, e.g., by using the representation
of a finite supremum from R3.1.2.

Lemma R33.4.9 Let (X, 7) be a Ty space and let {(Ya, fa) : @ € A} be a non-
empty set of compactifications of (X, 7). Let (Z,g) be a compactification of (X, 7). Let
A* be the set of all non-empty finite subsets of A and, for each F' € A*, let (Yp, fr)
be a compactification which acts as the supremum of {(Ya, fo) : @« € F}. Then (Z,g)
acts as the supremum of {(Y,, fo) : @« € A} if and only if (Z, g) acts as the supremum of
{(YF, fF) F e A*}

Proof: First assume (Z, g) act as the supremum of {(Y,, fo) : @« € A}. For any F in
A*, since FF C A, (Z,g) is an upper bound of {(Ya, fo) : @« € F} and so (Z,9) > (Yr, fr)-
Thus (Z, g) is an upper bound of {(Yr, fr) : F € A*}. Now let (W, h) be an upper bound
of {(Yr, fr) : FF € A*}. For every a € A, (Y{a}, f{a}) is equivalent to (Ya, fo). Thus
(W, h) is an upper bound of {(Yy,, fo) : « € F'} and so (W, h) > (Z,g), i.e., (Z,g) acts as
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the least upper bound of {(Yr, fr) : F' € A*}. Now assume (Z, g) acts as the supremum
of {(Yr, fr) : F € A*}. Since, for every a € A, (Yo}, f{a}) is equivalent to (Ya, fo),
(Z,g) is an upper bound of {(Y,, fo) : @ € A}. As in the first half of this proof, an upper
bound (W, h) of {(Ya, fa) : @ € A} is also an upper bound of {(Yr, fr) : F' € A*} and so
(W,h) > (Z,g). Thus (Z, g) acts as the least upper bound of {(Yy,, fo) : o € A}.

Proposition R33.4.10 Let (X, 7) be a non-compact, locally compact T space and
let {(Ya, fa) : @ € A} be a non-empty set of finite-point compactifications of (X, 7). Let
the compactification (Z, g) act as the supremum of {(Y,, fo) : @« € A}. Then there is a
normal basis Z for (X, 7) such that (w(Z2),tz) is equivalent to (Z, g).

Proof: Let A* be the set of all non-empty finite subsets of A and, for each F' € A*,
let (Y, fr) be a compactification which acts as the supremum of {(Y,, fo) : @ € F}. By
R33.4.8 each (Yr, fr) is a finite-point compactification and so by R5.1.2 there is a finite
star Sp for (X, 7) such that (Ys,, fs,) is equivalent to (Y, fr). Next it will be shown
that {Z(Sp) : F' € A*} has the directed set property under containment. Let F, H € A*.
F UH is also in A* and (Ypum, frum) is an upper bound of {(Yy, fo) : @ € F'} and so
(Yrum, fror) > (Yr, fr). Similarly (Yrum, fror) > (Ya, fu) and by equivalence the
same relationships hold for the compactifications determined by Spyum, S, and Sy. By
R33.2.5 and R33.3.8 Z(Spun) 2 Z(Sr) U Z(Sy) and the claim is verified. By R9.2.1
Z =U{Z2(SF) : F € A*} is a normal basis for (X, 7). Because of R33.3.9 the hypothesis of
R9.Add.5 holds and so (w(Z),tz) acts as a supremum for {(w(Z(SF)),tz(s,)) : F' € A"}
and by equivalence for {(Yr, fr) : F' € A*}. By R33.4.9 (w(Z),tz) acts as the supremum
of {(Ya, fo) : @ € A} and so (w(Z),tz) is equivalent to (Z,g).

In other words, the previous proposition says that a supremum of finite-point com-
pactifications must be a Wallman compactification.

Albert J. Klein 2023
http://www.susanjkleinart.com/compactification/
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