Normal Bases for Finite-Point Compactifications

In [4] it is shown that every finite-point compactification of an infinite discrete space is equivalent to a compactification generated from a normal basis. Here that result and the technique used to prove it are generalized to finite-point compactifications of an arbitrary non-compact $T_{3 \frac{1}{2}}$ space. It is also shown that a supremum of finite-point compactifications must be a Wallman compactification.

Note that all compactifications considered are T_{2} compactifications and that a noncompact space has a finite-point compactification if and only if it is locally compact and T_{2}. For $A \subseteq X, \bar{A}$ denotes the closure of A in X.

Let (X, τ) be a non-compact T_{2} topological space. A pairwise disjoint family $\left\{G_{i}\right.$: $i=1, \ldots, n\}$ of open sets whose union has a compact complement K such that $K \cup G_{i}$ is not compact for each i will be called an n-star of (X, τ). In what follows, when an n-star is given as a pairwise disjoint family $\left\{G_{i}: i=1, \ldots, n\right\}$, the compact set $X-\cup_{i=1}^{n} G_{i}$ will be implicit unless needed. In R5.1.1 it is shown that a T_{2} space with an n-star is locally compact and n-stars determine n-point compactifications.

When (X, τ) is discrete, infinitely many examples of n-stars are provided by n compatible equivalence relations. See R5.1.9 and R5.1.10. For an arbitrary non-compact locally compact T_{2} space $(X, \tau),\{X\}$ is a 1 -star, which determines the one-point compactification. In \mathbb{R} both $\{(-\infty, 0),(0, \infty)\}$ and $\{-\infty,-1)),(1, \infty)\}$ are a 2 -stars, which determine equivalent two-point compactifications.

The Normal Basis Generated by an n-star

Definition R33.1.1 Let $\left\{G_{i}: i=1, \ldots, n\right\}$ be an n-star for the non-compact T_{2} topological space (X, τ) and let $S \subseteq X$. Let $\Delta \subseteq\{1,2 \ldots, n\}$. S is associated with Δ if and only if $i \in \Delta$ implies $S \cap G_{i}$ has compact closure in X and $i \notin \Delta \operatorname{implies}(X-S) \cap G_{i}$ has compact closure in X.

When (X, τ) is discrete, this definition reduces to R5.3.1.
Lemma R33.1.2 Let $\left\{G_{i}: i=1, \ldots, n\right\}$ be an n-star for the non-compact T_{2} topological space (X, τ) and let $S \subseteq X$. Assume S is associated with Δ_{1} and with Δ_{2}, both subsets of $\{1,2, \ldots, n\}$. Then $\Delta_{1}=\Delta_{2}$

Proof: Let $K=X-\cup_{i=1}^{n} G_{i}$. First note that $K \cup G_{i}$ is closed for each $1 \leq i \leq n$ because its complement is the open set $\cup\left\{G_{j}: j \neq i\right\}$. Now let $i \in \Delta_{1}$ so that $S \cap G_{i}$ has compact closure in X. Suppose $i \notin \Delta_{2}$ so that $(X-S) \cap G_{i}$ also has compact closure in X. Since $G_{i}=\left(S \cap G_{i}\right) \cup\left((X-S) \cap G_{i}\right), \overline{G_{i}}$ is the union of two compact sets and so compact. Since $K \cup G_{i}$ is closed, $\overline{G_{i}} \subseteq K \cup G_{i}$. Then the closed set $K \cup G_{i}$ is contained in $K \cup \overline{G_{i}}$, a union of two compact sets, so that $K \cup G_{i}$ is compact. But by definition of an n-star $K \cup G_{i}$ is not compact, a contradiction. Thus $i \in \Delta_{2}$. Similarly $\Delta_{2} \subseteq \Delta_{1}$.

Lemma R33.1.3 Let (X, τ) be a topological space, let $S \subseteq X$, and let $G \in \tau$. Then $\overline{S \cap G}=\overline{\bar{S} \cap G}$.

Proof: Since $\overline{\bar{S} \cap G}$ is a closed set containing $S \cap G, \overline{S \cap G} \subseteq \overline{\bar{S} \cap G}$. Now let $x \in \overline{\bar{S} \cap G}$ and let $x \in O \in \tau$. Pick $t \in(\bar{S} \cap G) \cap O$. Then t is in \bar{S} and in the open set $G \cap O$ so that there is s in $S \cap(G \cap O)=(S \cap G) \cap O$. Thus $x \in \overline{S \cap G}$.

Lemma R33.1.4 Let $\left\{G_{i}: i=1, \ldots, n\right\}$ be an n-star for the non-compact T_{2} topological space (X, τ) and let $S \subseteq X$. Then
i) S is associated with $\{1,2, \ldots, n\}$ if and only if \bar{S} is compact.
ii) If S is associated with Δ, then $X-S$ is associated with $\{1,2, \ldots, n\}-\Delta$.
iii) If S is associated with Δ, \bar{S} is also associated with Δ.

Proof: Let $K=X-\cup_{i=1}^{n} G_{i}$ and write X as $K \cup\left(\cup_{i=1}^{n} G_{i}\right)$ so that one can write $S=(S \cap K) \cup\left(\cup_{i=1}^{n}\left(S \cap G_{i}\right)\right)$ and $\bar{S}=\overline{S \cap K} \cup\left(\cup_{i=1}^{n} \overline{S \cap G_{i}}\right)$. Since K is compact, so is $\overline{S \cap K} \subseteq K$. Thus, if S is associated with $\{1,2, \ldots, n\}$, the definition and second equation show that \bar{S} is compact. Conversely, if \bar{S} is compact, for $1 \leq i \leq n, S \cap G_{i} \subseteq \bar{S}$ and so has compact closure. Thus i) holds. Part ii) follows from the definition because $X-(X-S)=$ S. For part iii) assume S is associated with Δ. If $i \in \Delta$, because $\overline{\bar{S} \cap G_{i}}=\overline{S \cap G_{i}}$ is compact, $\bar{S} \cap G_{i}$ has compact closure in X. If $i \notin \Delta$, because $X-\bar{S} \subseteq X-S,(X-\bar{S}) \cap G_{i}$ has compact closure in X. The conclusion follows from the definition.

Lemma R33.1.5 Let $\left\{G_{i}: i=1, \ldots, n\right\}$ be an n-star for the non-compact T_{2} topological space (X, τ) and let S, T be subsets of X. Assume S is associated with Δ and T is associated with Γ. Then $S \cup T$ is associated with $\Delta \cap \Gamma$ and $S \cap T$ is associated with $\Delta \cup \Gamma$.

Proof: For $i \in \Delta \cap \Gamma$, because $S \cap G_{i}$ and $T \cap G_{i}$ both have compact closure in X, so does $(S \cup T) \cap G_{i}$. For $i \notin \Delta \cap \Gamma$, at least one of $(X-S) \cap G_{i},(X-T) \cap G_{i}$ has compact closure in X, which implies that $(X-(S \cup T)) \cap G_{i}=((X-S) \cap(X-T)) \cap G_{i}$ does as well. Thus the first assertion holds. For $i \in \Delta \cup \Gamma$, at least one of $S \cap G_{i}, T \cap G_{i}$ has compact closure in X so that $(S \cap T) \cap G_{i}$ does also. For $i \notin \Delta \cup \Gamma$, both $(X-S) \cap G_{i}$ and $(X-T) \cap G_{i}$ have compact closure in X so that $(X-(S \cap T)) \cap G_{i}=((X-S) \cup(X-T)) \cap G_{i}$ does as well. Thus the second claim holds.

Definition R33.1.6 Let $\mathcal{S}=\left\{G_{i}: i=1, \ldots, n\right\}$ be an n-star for the non-compact T_{2} topological space $(X, \tau) . \mathcal{Z}(\mathcal{S})$ is defined to be

$$
\{Z \subseteq X: Z \text { is } \tau-\text { closed and } Z \text { is associated with some } \Delta \subseteq\{1, \ldots, n\}\} .
$$

The next lemma shows that $\mathcal{Z}(\mathcal{S})$ has the first three properties in P3.1, the definition of a normal basis. By R33.1.4i $\mathcal{Z}(\mathcal{S})$ contains all finite subsets of X and so is a non-empty family of closed sets.

Lemma R33.1.7 Let $\mathcal{S}=\left\{G_{i}: i=1, \ldots, n\right\}$ be an n-star for the non-compact T_{2} topological space (X, τ). Then
i) $\mathcal{Z}(\mathcal{S})$ is a base for the closed sets of (X, τ).
ii) $\mathcal{Z}(\mathcal{S})$ is closed under finite unions and intersections.
iii) If E is closed in ($X, \tau)$ and $x \notin E$, then there is $Z \in \mathcal{Z}(\mathcal{S})$ such that $x \in Z$ and $Z \cap E=\emptyset$.
Proof: Because the closed sets are closed under finite unions and intersections, part ii) is immediate from R33.1.5. Let E be closed and $x \notin E$. By R33.1.4i $\{x\} \in \mathcal{Z}(\mathcal{S})$ and so iii) holds. As noted above (X, τ) is locally compact and so there is O open with $x \in O \subseteq \bar{O} \subseteq X-E$, where \bar{O} is compact. By the first two parts of R33.1.4 $X-O$ is associated with \emptyset and so is in $\mathcal{Z}(\mathcal{S})$. Since $x \notin X-O$ and $E \subseteq X-O$, part i) holds.

Verifying the fourth requirement is done in the next 2 lemmas.
Lemma R33.1.8 Let $\mathcal{S}=\left\{G_{i}: i=1, \ldots, n\right\}$ be an n-star for the non-compact T_{2} topological space (X, τ). Let Z_{1}, Z_{2} be in $\mathcal{Z}(\mathcal{S})$ with Z_{i} associated with Δ_{i}. Assume $Z_{1} \cap \mathcal{Z}_{2}=\emptyset$. Then $\Delta_{1} \cup \Delta_{2}=\{1, \ldots, n\}$.

Proof: By R33.1.4i \emptyset is associated with $\{1, \ldots, n\}$ and by R33.1.5 $Z_{1} \cap Z_{2}$ is associated with $\Delta_{1} \cup \Delta_{2}$. The conclusion follows from R33.1.2.

Lemma R33.1.9 Let $\mathcal{S}=\left\{G_{i}: i=1, \ldots, n\right\}$ be an n-star for the non-compact T_{2} topological space (X, τ). Let Z_{1}, Z_{2} be in $\mathcal{Z}(\mathcal{S})$ with Z_{i} associated with Δ_{i}. Assume $Z_{1} \cap \mathcal{Z}_{2}=\emptyset$. Then there are $C, D \in \mathcal{Z}(\mathcal{S})$ such that $C \cup D=X, Z_{1} \subseteq X-C$, and $Z_{2} \subseteq X-D$.

Proof: Let K be the complement in X of $\cup_{i=1}^{n} G_{i}$ so that $X=K \cup G_{1} \cup \cdots \cup G_{n}$. $K \cap Z_{1}$ is a compact subset of the open set $X-Z_{2}$. As noted above, (X, τ) is locally compact and so there is $O_{0} \in \tau$ with $\overline{O_{0}}$ compact such that $K \cap Z_{1} \subseteq O_{0} \subseteq \overline{O_{0}} \subseteq X-Z_{2}$. For each $i \in \Delta_{1}, \overline{Z_{1} \cap G_{i}}$ is a compact subset of Z_{1}, which is contained in the open set $X-Z_{2}$. Again by local compactness, there is $O_{i} \in \tau$ with $\overline{O_{i}}$ compact such that $\overline{Z_{1} \cap G_{i}} \subseteq O_{i} \subseteq \overline{O_{i}} \subseteq X-Z_{2}$. For $i \notin \Delta_{1}$, by the previous lemma $i \in \Delta_{2}$ and so $\overline{Z_{2} \cap G_{i}}$ is compact. By local compactness, since $\overline{Z_{2} \cap G_{i}} \subseteq Z_{2} \subseteq X-Z_{1}$, there is O_{i}^{*} open with $\overline{O_{i}^{*}}$ compact such that $\overline{Z_{2} \cap G_{i}} \subseteq O_{i}^{*} \subseteq \overline{O_{i}^{*}} \subseteq X-Z_{1}$. Similarly, for the compact $Z_{2} \cap K$, there is O_{0}^{*} open with $\overline{O_{0}^{*}}$ compact such that $Z_{2} \cap K \subseteq O_{0}^{*} \subseteq \overline{O_{0}^{*}} \subseteq X-Z_{1}$. Now for $i \notin \Delta_{1}$, let $O_{i}=\left(X-\overline{O_{i}^{*}}\right) \cap G_{i} \cap\left(X-\overline{O_{0}^{*}}\right)$.

Next define $C=X-\cup_{i=0}^{n} O_{i}$ and $D=\cup_{i=0}^{n} \overline{O_{i}}$. Clearly C and D are closed sets with $C \cup D=X$. Note that, for $i \notin \Delta_{1}, Z_{1} \subseteq\left(X-\overline{O_{0}^{*}}\right) \cap\left(X-\overline{O_{i}^{*}}\right)$ so that $Z_{1} \cap G_{i} \subseteq O_{i}$. By construction $Z_{1} \cap K \subseteq O_{0}$ and, for $i \in \Delta_{1}, Z_{1} \cap G_{i} \subseteq O_{i} . Z_{1}=\left(Z_{1} \cap K\right) \cup\left(\cup_{i=1}^{n}\left(Z_{1} \cap G_{i}\right)\right)$ and so $Z_{1} \subseteq \cup_{i=0}^{n} O_{i}=X-C$. To see that $Z_{2} \subseteq X-D$, first note that by construction $Z_{2} \subseteq X-\overline{O_{0}}$ and, for $i \in \Delta_{1}, Z_{2} \subseteq X-\overline{O_{i}}$. For $i \notin \Delta_{1}$, it is claimed that $Z_{2} \subseteq X-\overline{O_{i}}$ as well. Deny that and let $x \in Z_{2}$ with $x \in \overline{O_{i}}$. Since $O_{i} \subseteq X-\overline{O_{0}^{*}} \subseteq X-O_{0}^{*}$ which is closed, $\overline{O_{i}} \subseteq X-O_{0}^{*} \subseteq X-\left(Z_{2} \cap K\right)$. Since $x \notin Z_{2} \cap K$ and $x \in Z_{2}, x \notin K$. Also $O_{i} \subseteq G_{i} \subseteq K \cup G_{i}$ which is closed. Thus $\overline{O_{i}} \subseteq K \cup G_{i}$. Because $x \notin K, x \in G_{i}$. Since $x \in Z_{2}, x \in Z_{2} \cap G_{i} \subseteq O_{i}^{*}$. But $O_{i} \subseteq X-\overline{O_{i}^{*}} \subseteq X-O_{i}^{*}$ which is closed, so that $\overline{O_{i}} \subseteq X-O_{i}^{*}$ and $x \notin O_{i}^{*}$, a contradiction. In summary, $Z_{2} \subseteq \cap_{i=0}^{n}\left(X-\overline{O_{i}}\right)=X-D$.

To finish, it is necessary to show that both C and D are in $\mathcal{Z}(\mathcal{S})$. First note that, for $i \in \Delta_{1} \cup\{0\}, \overline{O_{i}}$ is compact and so by R33.1.4i O_{i} and $\overline{O_{i}}$ are associated with $\{1,2, \ldots, n\}$. By R33.1.4ii $X-O_{i}$ is associated with \emptyset. Thus $X-O_{i}$ and $\overline{O_{i}}$ are both in $\mathcal{Z}(\mathcal{S})$. Now suppose $i \notin \Delta_{1} . O_{i} \subseteq G_{i}$ and so, for $j \neq i, O_{i} \cap G_{j}=\emptyset$, which is compact. $\left(X-O_{i}\right) \cap G_{i}=$ $\left(\overline{O_{i}^{*}} \cup\left(X-G_{i}\right) \cup \overline{O_{0}^{*}}\right) \cap G_{i} \subseteq \overline{O_{i}^{*}} \cup \overline{O_{0}^{*}}$, which is the union of two compact sets. Thus O_{i} is associated with $\{1,2, \ldots, n\}-\{i\}$. By R33.1.4iii $\overline{O_{i}}$ is also associated with $\{1,2, \ldots, n\}-\{i\}$ so that $\overline{O_{i}}$ is in $\mathcal{Z}(\mathcal{S})$. By R33.1.4ii $X-O_{i}$ is associated with $\{i\}$ and so is in $\mathcal{Z}(\mathcal{S})$. Since $\mathcal{Z}(\mathcal{S})$ is closed under finite unions and intersections, $D=\cup_{i=0}^{n} \overline{O_{i}}$ and $C=\cap_{i=0}^{n}\left(X-O_{i}\right)$ are both in $\mathcal{Z}(\mathcal{S})$, as required.

Corollary R33.1.10 Let $\mathcal{S}=\left\{G_{i}: i=1, \ldots, n\right\}$ be an n-star for the non-compact T_{2} topological space (X, τ). Then $\mathcal{Z}(\mathcal{S})$ is a normal basis for (X, τ).

Proof: R33.1.7 and R33.1.9 show that $\mathcal{Z}(\mathcal{S})$ has the properties in P3.1, the definition of a normal basis.

When (X, τ) is discrete, R33.1.10 reduces to R 5.3 .3 .
The Compactification Generated by $\mathcal{Z}(\mathcal{S})$
Given $\left\{G_{i}: i=1, \ldots, n\right\}$ an n-star for the non-compact T_{2} topological space (X, τ), let p_{1}, \ldots, p_{n} be n distinct objects not in X, let $Y=X \cup\left\{p_{1}, \ldots, p_{n}\right\}$, let σ be the set $\left\{O \subseteq Y: O \cap X \in \tau\right.$ and $p_{i} \in O \Rightarrow(X-O) \cap G_{i}$ has compact closure in $\left.X\right\}$, and let
$f: X \rightarrow Y$ by $f(x)=x$. In [4] it is noted that σ is a topology and (Y, f) is an n-point T_{2} compactification of (X, τ). (Y,f) will be called the n-point compactification determined by the n-star. The argument that (Y, σ) is compact and T_{2} uses only the T_{2} property of X, although that is not emphasized in [4].

Definition R33.2.1 Let $\mathcal{S}=\left\{G_{i}: i=1, \ldots, n\right\}$ be an n-star for the non-compact T_{2} topological space (X, τ) and let $1 \leq i \leq n$. The set \mathcal{F}_{i} is defined by

$$
\mathcal{F}_{i}=\{Z \in \mathcal{Z}(\mathcal{S}): Z \text { is associated with some } \Delta \subseteq\{1, \ldots, n\}-\{i\}\}
$$

To avoid subscript ambiguity, in what follows the point-filter of x in a space will be denoted $\mathcal{F}(x)$. The next lemma is a generality used in what follows.

Lemma R33.2.2 Let (X, τ) be a $T_{3 \frac{1}{2}}$ space with normal basis \mathcal{Z} and let \mathcal{H} be a \mathcal{Z}-filter. Assume C is a compact subset of X and $C \in \mathcal{H}$. Then there is $x \in X$ such that $\mathcal{H} \subseteq \mathcal{F}(x)$.

Proof: The set $\{C \cap Z: Z \in \mathcal{H}\}$ is contained in \mathcal{H} and is a family of closed subsets of C. Because \mathcal{H} is closed under finite intersections and $\emptyset \notin \mathcal{H},\{C \cap Z: Z \in \mathcal{H}\}$ has the finite intersection property. Since C is compact, there is x in $\cap\{C \cap Z: Z \in \mathcal{H}\}$. For any $Z \in \mathcal{H}, x \in Z \cap C$ and so $Z \in \mathcal{F}(x)$, i.e., $\mathcal{H} \subseteq \mathcal{F}(x)$.

Lemma R33.2.3 Let $\mathcal{S}=\left\{G_{i}: i=1, \ldots, n\right\}$ be an n-star for the non-compact T_{2} topological space (X, τ) and let $1 \leq i \leq n$. Then
i) \mathcal{F}_{i} is a $\mathcal{Z}(\mathcal{S})$-filter.
ii) \mathcal{F}_{i} is a $\mathcal{Z}(\mathcal{S})$-ultrafilter.
iii) \mathcal{F}_{i} is not a $\mathcal{Z}(\mathcal{S})$ point-filter.
iii) For $1 \leq j \leq n$ with $i \neq j, \mathcal{F}_{i} \neq \mathcal{F}_{j}$.

Proof: X is associated with \emptyset and so is in \mathcal{F}_{i}. Also \emptyset is associated with $\{1, \ldots, n\}$ and so is not in \mathcal{F}_{i}. Thus \mathcal{F}_{i} is a non-empty collection of non-empty $\mathcal{Z}(\mathcal{S})$-sets. Let Z_{1}, Z_{2} be in \mathcal{F}_{i} with Z_{1} associated with Δ_{1} and Z_{2} associated with Δ_{2}. By definition $i \notin \Delta_{1} \cup \Delta_{2}$. By R33.1.5 $Z_{1} \cap Z_{2}$ is associated with $\Delta_{1} \cup \Delta_{2}$ and so $Z_{1} \cap Z_{2} \in \mathcal{F}_{i}$. Next let $Z \subseteq W$, where $Z \in \mathcal{F}_{i}$ and $W \in \mathcal{Z}(\mathcal{S})$ is associated with Γ. If $i \in \Gamma, \overline{Z \cap G_{i}} \subseteq \overline{W \cap G_{i}}$, which is compact, so that i is in the set associated with Z, a contradiction. Thus $i \notin \Gamma$ so that $W \in \mathcal{F}_{i}$ and the first assertion holds. For part ii), let \mathcal{G} be a $\mathcal{Z}(\mathcal{S})$-filter with $\mathcal{F}_{i} \subseteq \mathcal{G}$. Let $Z \in \mathcal{G}$ be associated with Δ and suppose $Z \notin \mathcal{F}_{i}$, i.e., $i \in \Delta$. Note that G_{i} is associated with $\{1, \ldots, n\}-\{i\}$, as is $\overline{G_{i}}$ by R33.1.4iii, so that $\overline{G_{i}}$ is in \mathcal{F}_{i} and so in $\mathcal{G} . Z \cap \overline{G_{i}}$ is in \mathcal{G} and by R33.4.5 it is associated with $\{1, \ldots, n\}$. By R33.1.4i $Z \cap \overline{G_{i}}$ is compact. By R33.2.2 there is $x \in X$ such that $\mathcal{G} \subseteq \mathcal{F}(x)$. By local compactness there is $O \in \tau$ with $x \in O$ and \bar{O} compact. By parts i) and ii) of R33.1.4, $X-O$ is associated with \emptyset so that $X-O \in \mathcal{F}_{i}$. But $X-O \notin \mathcal{F}(x)$, which contradicts $\mathcal{G} \subseteq \mathcal{F}(x)$. Thus $Z \in \mathcal{F}_{i}$ and ii) holds. For iii), let $x \in X$. Since $\{x\}$ is associated with $\{1, \ldots, n\},\{x\} \in \mathcal{Z}(\mathcal{S}),\{x\} \in \mathcal{F}(x)$, and $\{x\} \notin \mathcal{F}_{i}$. Thus $\mathcal{F}_{i} \neq \mathcal{F}(x)$. Finally, let $j \neq i$ with $1 \leq j \leq n$. As above, $\overline{G_{i}}$ is in \mathcal{F}_{i} and is associated with $\{1, \ldots, n\}-\{i\}$. By definition $\overline{G_{i}} \notin \mathcal{F}_{j}$ and so $\mathcal{F}_{i} \neq \mathcal{F}_{j}$.

Lemma R33.2.4 Let $\mathcal{S}=\left\{G_{i}: i=1, \ldots, n\right\}$ be an n-star for the non-compact T_{2} topological space (X, τ). Let \mathcal{H} be a $\mathcal{Z}(\mathcal{S})$-ultrafilter. Then either there is $1 \leq i \leq n$ such that $\mathcal{H}=\mathcal{F}_{i}$ or \mathcal{H} is a $\mathcal{Z}(\mathcal{S})$ point-filter.

Proof: Assume $\mathcal{H} \neq \mathcal{F}_{i}$ for all $1 \leq i \leq n$. For each i, since \mathcal{H} is a $\mathcal{Z}(\mathcal{S})$-ultrafilter, \mathcal{H} cannot be a proper subset of \mathcal{F}_{i} and so there is Z_{i} associated with Δ_{i} with $Z_{i} \in \mathcal{H}$
and $Z_{i} \notin \mathcal{F}_{i}$, i.e., $i \in \Delta_{i}$. Let $Z=\cap_{i=1}^{n} Z_{i}$. Then Z is in \mathcal{H} and Z is associated with $\cup_{i=1}^{n} \Delta_{i}=\{1, \ldots, n\}$ by R33.1.5. By R33.1.4i Z is compact and by R33.2.2 there is $x \in X$ such that $\mathcal{H} \subseteq \mathcal{F}(x)$. Since \mathcal{H} is a $\mathcal{Z}(\mathcal{S})$-ultrafilter, $\mathcal{H}=\mathcal{F}(x)$.

The next result generalizes R5.3.8.
Proposition R33.2.5 Let $\mathcal{S}=\left\{G_{i}: i=1, \ldots, n\right\}$ be an n-star for the non-compact T_{2} topological space (X, τ) and let (Y, f) be the n-point compactification determined by \mathcal{S}. Then (Y, f) is equivalent to $\left(\omega(\mathcal{Z}(\mathcal{S})), \iota_{\mathcal{Z}(\mathcal{S})}\right)$.

Proof: Define $\phi: Y \rightarrow \omega(\mathcal{Z}(\mathcal{S}))$ by $\phi(x)=\mathcal{F}(x)$ for $x \in X$ and $\phi\left(p_{i}\right)=\mathcal{F}_{i}$. It follows easily from R33.2.3 and R33.2.4 that ϕ is a bijection. By definition $\phi \circ f=\iota_{\mathcal{Z}(\mathcal{S})}$. Thus it remains to show that ϕ is continuous. For that, because $\left\{Z^{\omega}: Z \in \mathcal{Z}(\mathcal{S})\right\}$ is a base for the closed sets of $\omega(\mathcal{Z}(\mathcal{S}))$, it is sufficient to show that $\phi^{-1}\left[Z^{\omega}\right]$ is closed in Y for every $Z \in \mathcal{Z}(\mathcal{S})$. Let Z be in $\mathcal{Z}(\mathcal{S})$ be associated with Δ and let $A=Y-\phi^{-1}\left[Z^{\omega}\right]$. First, $x \in X-Z$ if and only if $Z \notin \mathcal{F}(x)$, i.e., $\phi(x) \notin Z^{\omega}$, i.e., $x \notin \phi^{-1}\left[Z^{\omega}\right]$. Thus $A \cap X=X-Z$, which is open in X, and $X-A=Z$. Next $p_{j} \in A$ if and only if $\phi\left(p_{j}\right) \notin Z^{\omega}$, i.e., $Z \notin \mathcal{F}_{j}$, i.e., $j \in \Delta$. Thus $p_{j} \in A$ implies $(X-A) \cap G_{j}=Z \cap G_{j}$ has compact closure in X. By the definition of the topology for Y, A is open in Y so that $X-A=\phi^{-1}\left[Z^{\omega}\right]$ is closed as required.

The next corollary could also be expressed by saying every finite-point compactification of a $T_{3 \frac{1}{2}}$ space is a Wallman compactification.

Corollary R33.2.6 Let (X, τ) be a non-compact $T_{3 \frac{1}{2}}$ space with a finite-point compactification (S, g). Then (S, g) is equivalent to a compactification generated from a normal basis.

Proof: The given compactification is an n-point compactification for some n. By R5.1.2 there is $\mathcal{S}=\left\{G_{i}: i=1, \ldots, n\right\}$ an n-star for X such that (Y, f), the n-point compactification determined by \mathcal{S}, is equivalent to (S, g). By the previous proposition and transitivity, (S, g) is equivalent to $\left(\omega(\mathcal{Z}(\mathcal{S})), \iota_{\mathcal{Z}(\mathcal{S})}\right)$.

Ordering of Finite-Point Compactifications

The first proposition on equivalence is essentially a corollary of a result of Magill [1]. It will subsequently be refined for ordered but non-equivalent cases.

Proposition R33.3.1 Let $\mathcal{S}=\left\{G_{i}: i=1, \ldots, n\right\}$ and $\mathcal{R}=\left\{O_{i}: i=1, \ldots, n\right\}$ be n-stars for the non-compact T_{2} topological space (X, τ). Let $K_{1}=X-\cup_{i=1}^{n} G_{i}$. Then $\left(\omega(\mathcal{Z}(\mathcal{S})), \iota_{\mathcal{Z}(\mathcal{S})}\right)$ is equivalent to $\left(\omega(\mathcal{Z}(\mathcal{R})), \iota_{\mathcal{Z}(\mathcal{R})}\right)$ if and only if there is σ, a permutation of $\{1, \ldots, n\}$, such that $\left(K_{1} \cup G_{i}\right) \cap\left(X-O_{\sigma(i)}\right)$ is compact for every $1 \leq i \leq n$.

Proof: Let $\left(Y_{\mathcal{S}}, f_{\mathcal{S}}\right)$ and $\left(Y_{\mathcal{R}}, f_{\mathcal{R}}\right)$ be the n-point compactifications determined by \mathcal{S}, \mathcal{R} respectively. By $\mathrm{R} 5.1 .5\left(Y_{\mathcal{S}}, f_{\mathcal{S}}\right)$ is equivalent to $\left(Y_{\mathcal{R}}, f_{\mathcal{R}}\right)$ if and only if there is σ, a permutation of $\{1, \ldots, n\}$, such that $\left(K_{1} \cup G_{i}\right) \cap\left(X-O_{\sigma(i)}\right)$ is compact for every $1 \leq i \leq n$. By transitivity and R33.2.5 the conclusion holds.

Comment: The proposition is expressed asymmetrically with regard to \mathcal{S} and \mathcal{R}. Reversing their roles would produce a permutation μ such that $\left(J \cup O_{i}\right) \cap\left(X-G_{\mu(i)}\right)$ is compact for every $1 \leq i \leq n$, where $J=X-\cup_{i=1}^{n} O_{i}$. By using the uniqueness of the connecting map and details of its construction, it can be shown that $\mu=\sigma^{-1}$. That will not be needed in what follows.

The next lemma applies to any T_{2} compactification, not just finite-point examples. It is undoubtedly known but is recorded here for completeness and ease of reference.

Lemma R33.3.2 Let (X, τ) be a $T_{3 \frac{1}{2}}$ space with T_{2} compactifications (Y, f) and (Z, g). Assume $\phi: Z \rightarrow Y$ is continuous with $\phi \circ g=f$. Then $\phi[Z-g[X]]=Y-f[X]$.

Proof: As usual ϕ is onto from general considerations and by hypothesis $\phi(g(x))$ is in $f[X]$ for every $x \in X$. Thus $Y-f[X] \subseteq \phi[Z-g[X]]$. Now let $z \in Z-g[X]$ and suppose $\phi(z)=f(x)$ for some $x \in X$. By the density of $g[X]$ in Z, there is a net $\left\{x_{\alpha}\right\}$ in X such that $\left\{g\left(x_{\alpha}\right)\right\}$ converges to z. Since ϕ is continuous and $\phi\left(g\left(x_{\alpha}\right)\right)=f\left(x_{\alpha}\right)$, the net $\left\{f\left(x_{\alpha}\right)\right\}$ converges to $\phi(z)=f(x)$. Because $f: X \rightarrow f[X]$ is a homeomorphism, $\left\{x_{\alpha}\right\}$ converges to x in X. By the continuity of $g,\left\{g\left(x_{\alpha}\right)\right\}$ converges to $g(x)$. Since limits are unique in T_{2} spaces, $z=g(x)$, which contradicts the choice of z. Thus $\phi[Z-g[X]] \subseteq Y-f[X]$.

Proposition R33.3.3 Let $\mathcal{S}=\left\{G_{i}: i=1, \ldots, n\right\}$ be an n-star for the non-compact T_{2} topological space (X, τ) and let $\mathcal{R}=\left\{O_{i}: i=1, \ldots, m\right\}$ be an m-star for the same space. Let $K=X-\cup_{i=1}^{m} O_{i}$. Then $\left(\omega(\mathcal{Z}(\mathcal{S})), \iota_{\mathcal{Z}(\mathcal{S})}\right) \leq\left(\omega(\mathcal{Z}(\mathcal{R})), \iota_{\mathcal{Z}(\mathcal{R})}\right)$ if and only if there is an onto map $r:\{1, \ldots, m\} \rightarrow\{1, \ldots, n\}$ such that, for every $1 \leq i \leq n$ and $j \in r^{-1}[\{i\}],\left(X-G_{i}\right) \cap\left(K \cup O_{j}\right)$ is compact in X.

Proof: Let $\left(Y_{\mathcal{S}}, f_{\mathcal{S}}\right)$ and $\left(Y_{\mathcal{R}}, f_{\mathcal{R}}\right)$ be the n-point, respectively m-point, compactifications determined by \mathcal{S} and \mathcal{R}. Notationally, assume $Y_{\mathcal{S}}=X \cup\left\{p_{1}, \ldots, p_{n}\right\}$ and $Y_{\mathcal{R}}=X \cup\left\{q_{1}, \ldots, q_{m}\right\}$. By transitivity and R33.2.5, the proposition holds if it can be verified for these representatives. First assume r exists. Define $\phi: Y_{\mathcal{R}} \rightarrow Y_{\mathcal{S}}$ by $\phi(x)=x$ and $\phi\left(q_{t}\right)=p_{r(t)}$. By definition $\phi \circ f_{\mathcal{R}}=f_{\mathcal{S}}$ and, since r is onto, ϕ is onto. It remains to check that ϕ is continuous. Let O be open in $Y_{\mathcal{S}}$. By definition of $\phi, \phi^{-1}[O] \cap X=O \cap X$, which is in τ. Let $q_{j} \in \phi^{-1}[O]$. To see that $\left(X-\phi^{-1}[O]\right) \cap O_{j}$ has compact closure in X, first note that $\phi\left(q_{j}\right)=p_{r(j)}$ is in O and so $(X-O) \cap G_{r(j)}$ has compact closure in X. By hypothesis for this part, $\left(X-G_{r(j)}\right) \cap\left(K \cup O_{j}\right)$ is compact in X. It is sufficient to verify that $\left(X-\phi^{-1}[O]\right) \cap O_{j} \subseteq\left((X-O) \cap G_{r(j)}\right) \cup\left(\left(X-G_{r(j)}\right) \cap\left(K \cup O_{j}\right)\right)$. Let $x \in\left(X-\phi^{-1}[O]\right) \cap O_{j}$. If $x \in G_{r(j)}$, by definition of $\phi, x \in(X-O) \cap G_{r(j)}$. If $x \notin G_{r(j)}$, then, since $x \in O_{j} \subseteq\left(K \cup O_{j}\right), x \in\left(X-G_{r(j)}\right) \cap\left(K \cup O_{j}\right)$. Thus the needed containment holds. Conversely, assume $\psi: Y_{\mathcal{R}} \rightarrow Y_{\mathcal{S}}$ is continuous with $\psi \circ f_{\mathcal{R}}=f_{\mathcal{S}}$. In this situation ψ is onto and, by R33.3.2, maps $\left\{q_{1}, \ldots, q_{m}\right\}$ onto $\left\{p_{1}, \ldots, p_{n}\right\}$. Define $r:\{1, \ldots, m\} \rightarrow\{1, \ldots, n\}$ by $r(j)=i$ where $\psi\left(q_{j}\right)=p_{i}$. Clearly r is onto. Let $1 \leq i \leq n$ and $j \in r^{-1}[\{i\}]$ so that $\psi\left(q_{j}\right)=p_{i}$. By definition of the topology on $Y_{\mathcal{S}}, G_{i} \cup\left\{p_{i}\right\}$ is open in $Y_{\mathcal{S}}$ and so $\psi^{-1}\left[G_{i} \cup\left\{p_{i}\right\}\right]$ is open in $Y_{\mathcal{R}}$. By definition of $f_{\mathcal{R}}$ and $g_{\mathcal{S}}, \psi(x)=x$ and so $X-\psi^{-1}\left[G_{i} \cup\left\{p_{i}\right\}\right]=X-G_{i}$. Since $q_{j} \in \psi^{-1}\left[G_{i} \cup\left\{p_{i}\right\}\right],\left(X-G_{i}\right) \cap O_{j}$ has compact closure in X. Because $K \cup O_{j}$ is closed in X and K is compact, $\left(X-G_{i}\right) \cap\left(K \cup O_{j}\right)$ is compact in X.

In the last proposition the proof that the existence of r is sufficient does not make clear the role of its surjectivity. It guarantees that the defined ϕ is onto, of course, but that would follow from general considerations if ϕ could be shown continuous without using the fact that r is onto. The next lemma and proposition, which are a bit of a digression, show that the hypothesis cannot be true if r is not onto.

Lemma R33.3.4 Let $\mathcal{R}=\left\{O_{i}: i=1, \ldots, m\right\}$ be an m-star for the non-compact T_{2} space (X, τ). Let $\left(Y_{\mathcal{R}}, f_{\mathcal{R}}\right) m$-point compactification determined \mathcal{R}. Notationally, assume $Y_{\mathcal{R}}=X \cup\left\{q_{1}, \ldots, q_{m}\right\}$. Let $O \in \tau$ and assume that $O \cup\left\{q_{1}, \ldots, q_{n}\right\}$ is open in $Y_{\mathcal{R}}$. Then $X-O$ is compact in X.

Proof: $X-O=\overline{X-O}=\left(K \cap(X-O) \cup\left(\cup_{i=1}^{m} \overline{O_{i} \cap(X-O)}\right.\right.$, where $K=X-\cup_{i=1}^{m} O_{i}$.

By hypothesis each term in that finite union is compact and so $X-O$ is compact.
Proposition R33.3.5 Let $\mathcal{S}=\left\{G_{i}: i=1, \ldots, n\right\}$ be an n-star for the non-compact T_{2} topological space (X, τ) and let $\mathcal{R}=\left\{O_{i}: i=1, \ldots, m\right\}$ be an m-star for the same space. Let $K=X-\cup_{i=1}^{m} O_{i}$. Assume $r:\{1, \ldots, m\} \rightarrow\{1, \ldots, n\}$ is not onto. Then there is $1 \leq i \leq n$ and $j \in r^{-1}[\{i\}]$ such that $\left(X-G_{i}\right) \cap\left(K \cup O_{j}\right)$ is not compact in X.

Proof: Let $G=\cup\left\{G_{i}: r^{-1}[\{i\}] \neq \emptyset\right\}$, an open set in X. If one assumes the conclusion is false, then, for every $1 \leq j \leq m,(X-G) \cap O_{j}$ has compact closure in X because it is a subset of $\left(X-G_{r(j)}\right) \cap O_{j}$. Thus $G \cup\left\{q_{1}, \ldots, q_{m}\right\}$ is open in $Y_{\mathcal{R}}$. By the lemma $X-G$ is compact. Because r is not onto, there is $1 \leq k \leq n$ such that $r^{-1}[\{k\}]=\emptyset$. By definition of G and the disjointness property of the n-star, $G_{k} \subseteq X-G$. For $J=X-\cup_{i=1}^{n} G_{i}$, the closed non-compact set $J \cup G_{k}$ is contained in the compact set $J \cup(X-G)$, a contradiction.

This proposition shows that R33.3.3 can be simplified as follows.
Corollary R33.3.6 Let $\mathcal{S}=\left\{G_{i}: i=1, \ldots, n\right\}$ be an n-star for the non-compact T_{2} topological space (X, τ) and let $\mathcal{R}=\left\{O_{i}: i=1, \ldots, m\right\}$ be an m-star for the same space. Let $K=X-\cup_{i=1}^{m} O_{i}$. Then $\left(\omega(\mathcal{Z}(\mathcal{S})), \iota_{\mathcal{Z}(\mathcal{S})}\right) \leq\left(\omega(\mathcal{Z}(\mathcal{R})), \iota_{\mathcal{Z}(\mathcal{R})}\right)$ if and only if there is a map $r:\{1, \ldots, m\} \rightarrow\{1, \ldots, n\}$ such that, for every $1 \leq i \leq n$ and $j \in r^{-1}[\{i\}]$, $\left(X-G_{i}\right) \cap\left(K \cup O_{j}\right)$ is compact in X.

Proof: The necessity of the condition is immediate from R33.3.3. The sufficiency follows from R33.3.5 and R33.3.3.

Lemma R33.3.7 Let $\mathcal{S}=\left\{G_{i}: i=1, \ldots, n\right\}$ be an n-star for the non-compact T_{2} topological space (X, τ) and let $\mathcal{R}=\left\{O_{i}: i=1, \ldots, m\right\}$ be an m-star for the same space. Assume there is a map $r:\{1, \ldots, m\} \rightarrow\{1, \ldots, n\}$ such that, for every $1 \leq i \leq n$ and $j \in r^{-1}[\{i\}],\left(X-G_{i}\right) \cap\left(K \cup O_{j}\right)$ is compact in X, where $K=X-\cup_{i=1}^{m} O_{i}$. Let Z be associated with Δ relative to \mathcal{S}. Then Z is associated with $r^{-1}[\Delta]$ relative to \mathcal{R}.

Proof: Let $j \in\{1, \ldots, m\}$ and let $i=r(j)$. If $j \in r^{-1}[\Delta], i \in \Delta$ so that $Z \cap G_{i}$ has compact closure in $X . Z \cap O_{j}=\left(Z \cap O_{j} \cap G_{i}\right) \cup\left(Z \cap O_{j} \cap\left(X-G_{i}\right)\right)$. The first term of that union is contained in $Z \cap G_{i}$ and the second is contained in the compact $\left(X-G_{i}\right) \cap\left(K \cup O_{j}\right)$. Thus $Z \cap O_{j}$ has compact closure in X. If $j \notin r^{-1}[\Delta], i \notin \Delta$ and so $(X-Z) \cap G_{i}$ has compact closure in X. Now proceed exactly as before: $(X-Z) \cap O_{j}=$ $\left((X-Z) \cap O_{j} \cap G_{i}\right) \cup\left((X-Z) \cap O_{j} \cap\left(X-G_{i}\right)\right)$. The first term of that union is contained in $(X-Z) \cap G_{i}$ and the second is contained in the compact $\left(X-G_{i}\right) \cap\left(K \cup O_{j}\right)$.

Corollary R33.3.8 Let $\mathcal{S}=\left\{G_{i}: i=1, \ldots, n\right\}$ be an n-star for the non-compact T_{2} topological space (X, τ) and let $\mathcal{R}=\left\{O_{i}: i=1, \ldots, m\right\}$ be an m-star for the same space. Assume $\left(\omega(\mathcal{Z}(\mathcal{S})), \iota_{\mathcal{Z}(\mathcal{S})}\right) \leq\left(\omega(\mathcal{Z}(\mathcal{R})), \iota_{\mathcal{Z}(\mathcal{R})}\right)$. Then $\mathcal{Z}(\mathcal{S}) \subseteq \mathcal{Z}(\mathcal{R})$.

Proof: By R33.3.6 the hypothesis of R33.3.7 holds. The conclusion follows from the definition of the normal basis determined by a k-star and R33.3.7.

In the next proposition superscript notation will be used to distinguish filters in the two normal bases, $\mathcal{Z}(\mathcal{S})$ and $\mathcal{Z}(\mathcal{R})$.

Proposition R33.3.9 Let $\mathcal{S}=\left\{G_{i}: i=1, \ldots, n\right\}$ be an n-star for the non-compact T_{2} topological space (X, τ) and let $\mathcal{R}=\left\{O_{i}: i=1, \ldots, m\right\}$ be an m-star for the same space. Assume $(\omega(\mathcal{Z}(\mathcal{S})), \iota \mathcal{Z}(\mathcal{S})) \leq(\omega(\mathcal{Z}(\mathcal{R})), \iota \mathcal{Z}(\mathcal{R}))$. Then, for every $\mathcal{F}^{\mathcal{R}}$ in $\omega(\mathcal{Z}(\mathcal{R}))$, $\mathcal{F}^{\mathcal{R}} \cap \mathcal{Z}(\mathcal{S})$ is in $\omega(\mathcal{Z}(\mathcal{S}))$.

Proof: Let $\mathcal{F}^{\mathcal{R}}(x)$ be the $\mathcal{Z}(\mathcal{R})$ point-filter of x. By R33.3.8 $\mathcal{Z}(\mathcal{S}) \subseteq \mathcal{Z}(\mathcal{R})$ and so by R9.1.1ii $\mathcal{F}^{\mathcal{R}}(x) \cap \mathcal{Z}(\mathcal{S})=\mathcal{F}^{\mathcal{S}}(x)$, the $\mathcal{Z}(\mathcal{S})$ point-filter of x. Now assume $\mathcal{F}^{\mathcal{R}}$ is a non-point
$\mathcal{Z}(\mathcal{R})$-ultrafilter. By R33.2.4 $\mathcal{F}^{\mathcal{R}}=\mathcal{F}_{j}^{\mathcal{R}}$ for some $j \in\{1, \ldots, m\}$. By R33.3.6 there is a map r so that the hypothesis of R33.3.7 holds. Let $i=r(j)$. Let Z in $\mathcal{F}_{i}^{\mathcal{S}}$ be associated with Δ. By definition R33.2.1 $\Delta \subseteq\{1, \ldots, n\}-\{i\}$ and $Z \in \mathcal{Z}(\mathcal{S})$. By R33.3.7 Z is associated with $r^{-1}[\Delta]$ relative to $\mathcal{Z}(\mathcal{R})$ and so $\left.Z \in \mathcal{Z}^{\mathcal{R}}\right)$ by definition. Note that $j \notin r^{-1}[\Delta]$ because $r(j)=i$ is not in Δ. By R33.2.1 $Z \in \mathcal{F}_{j}^{\mathcal{R}} \cap \mathcal{Z}(\mathcal{S})$. Thus $\mathcal{F}_{i}^{\mathcal{S}} \subseteq \mathcal{F}_{j}^{\mathcal{R}} \cap \mathcal{Z}(\mathcal{S})$. The latter is a $\mathcal{Z}(\mathcal{S})$-filter by R9.1.1i and $\mathcal{F}_{i}^{\mathcal{S}}$ is a $\mathcal{Z}(\mathcal{S})$-ultrafilter by R32.2.3ii. Thus $\mathcal{F}_{i}^{\mathcal{S}}=\mathcal{F}_{j}^{\mathcal{R}} \cap \mathcal{Z}(\mathcal{S})$.

Suprema of Finite-Point Compactifications

Proposition R33.4.1 Let $\mathcal{S}=\left\{G_{i}: i=1, \ldots, n\right\}$ be an n-star for the non-compact T_{2} topological space (X, τ) and let $\mathcal{R}=\left\{O_{i}: i=1, \ldots, m\right\}$ be an m-star for the same space. Let $\mathcal{P}=\left\{G_{i} \cap O_{j}: \overline{G_{i} \cap O_{j}}\right.$ is not compact in $\left.X\right\}$. Then \mathcal{P} is a k-star for (X, τ) for some k, with $\max \{m, n\} \leq k \leq m n$.

Proof: Let $P=\left\{(i, j): G_{i} \cap O_{j}: \overline{G_{i} \cap O_{j}}\right.$ is not compact in $\left.X\right\}$ and let $k=|P|$. Since $P \subseteq\{1, \ldots, n\} \times\{1, \ldots, m\}, k \leq m n$. Clearly $k=|\mathcal{P}|$. By definition each $G_{i} \cap O_{j}$ is open and, if $(i, j) \neq(r, s),\left(G_{i} \cap O_{j}\right) \cap\left(G_{r} \cap O_{s}\right)$ is empty. Thus \mathcal{P} is a pairwise disjoint collection of open sets. Now let $L=X-\cup\left\{G_{i} \cap O_{j}:(i, j) \in P\right\}$, a closed set. For $K=X-\cup_{i=1}^{n} G_{i}$ and $J=X-\cup_{j=1}^{m} O_{j}$, it will be shown that $L \subseteq K \cup J \cup\left(\cup\left\{\overline{G_{i} \cap O_{j}}: \overline{G_{i} \cap O_{j}}\right.\right.$ is compact in $\left.\left.X\right\}\right)$, a finite union of compact sets. Let $x \in L$ and suppose $x \notin K \cup J$. Then there exist i, j such that $x \in G_{i} \cap O_{j}$. Since $x \in L,(i, j) \notin P$ so that $\overline{G_{i} \cap O_{j}}$ is compact. Thus the claim is verified so that L is compact. Now let $(i, j) \in P . L \cup\left(G_{i} \cap O_{j}\right)$ is closed because its complement is open by pairwise disjointness. Thus the non-compact $\overline{G_{i} \cap O_{j}}$ is a subset of $L \cup\left(G_{i} \cap O_{j}\right)$ and so $L \cup\left(G_{i} \cap O_{j}\right)$ must also be non-compact. By definition \mathcal{P} is a k-star. Finally let $1 \leq i \leq n$ and suppose, for every $1 \leq j \leq m, \overline{G_{i} \cap O_{j}}$ is compact. Because $G_{i}=\left(J \cap G_{i}\right) \cup\left(\cup_{j=1}^{m}\left(G_{i} \cap O_{j}\right)\right), \overline{G_{i}}=\overline{J \cap G_{i}} \cup\left(\cup_{j=1}^{m} \overline{G_{i} \cap O_{j}}\right)$ so that $\overline{G_{i}}$ is compact. But the non-compact closed set $K \cup G_{i}$ is contained in the compact $K \cup \overline{G_{i}}$, a contradiction. Thus there is $1 \leq j \leq m$ such that $(i, j) \in P$ and so $k=|P| \geq n$. Similarly $k \geq m$.

For results through R33.4.5 the following notation will be used: Let (X, τ) be a noncompact T_{2} topological space with n-star $\mathcal{S}=\left\{G_{i}: i=1, \ldots, n\right\}$ and m-star $\mathcal{R}=\left\{O_{i}: i=1, \ldots, m\right\}$. Let $P=\left\{(i, j): \overline{G_{i} \cap O_{j}}\right.$ is not compact in $\left.X\right\}$ and let $\mathcal{P}=\left\{G_{i} \cap O_{j}:(i, j) \in P\right\}$. The compactifications determined by \mathcal{S}, \mathcal{R}, and \mathcal{P} will be denoted $\left(Y_{\mathcal{S}}, f_{\mathcal{S}}\right),\left(Y_{\mathcal{R}}, f_{\mathcal{R}}\right)$, and $\left(Y_{\mathcal{P}}, f_{\mathcal{P}}\right)$ respectively with $Y_{\mathcal{S}}=X \cup\left\{s_{1}, \ldots, s_{n}\right\}$, $Y_{\mathcal{R}}=X \cup\left\{r_{1}, \ldots, r_{n}\right\}$, and $Y_{\mathcal{P}}=X \cup\left\{p_{(i, j)}:(i, j) \in P\right\}$.

Proposition R33.4.2 Let $\mathcal{S}=\left\{G_{i}: i=1, \ldots, n\right\}$ be an n-star for the non-compact T_{2} topological space (X, τ) and let $\mathcal{R}=\left\{O_{i}: i=1, \ldots, m\right\}$ be an m-star for the same space. Let $\mathcal{P}=\left\{G_{i} \cap O_{j}: \overline{G_{i} \cap O_{j}}\right.$ is not compact in $\left.X\right\}$. Then $\left(Y_{\mathcal{S}}, f_{\mathcal{S}}\right) \leq\left(Y_{\mathcal{P}}, f_{\mathcal{P}}\right)$ and $\left(Y_{\mathcal{R}}, f_{\mathcal{R}}\right) \leq\left(Y_{\mathcal{P}}, f_{\mathcal{P}}\right)$.

Proof: Define $\sigma_{\mathcal{S}}: Y_{\mathcal{P}} \rightarrow Y_{\mathcal{S}}$ by $\sigma_{\mathcal{S}}(x)=x$ for $x \in X$ and $\sigma_{\mathcal{S}}\left(p_{(i, j)}\right)=s_{i}$. By definition $\sigma_{\mathcal{S}} \circ f_{\mathcal{P}}=f_{\mathcal{S}}$. Now let G be open in $Y_{\mathcal{S}}$. It is easy to check that $X \cap \sigma_{\mathcal{S}}^{-1}[G]=X \cap G$, which is open in X. Likewise, $X-\sigma_{\mathcal{S}}^{-1}[G]=X-G$. If $p_{(i, j)} \in \sigma_{\mathcal{S}}^{-1}[G], s_{i} \in G$ and $\left(X-\sigma_{\mathcal{S}}^{-1}[G]\right) \cap\left(G_{i} \cap O_{j}\right) \subseteq(X-G) \cap G_{i}$, which has compact closure in X. Thus $\sigma_{\mathcal{S}}^{-1}[G]$ is open in $Y_{\mathcal{P}}$ and $\sigma_{\mathcal{S}}$ is continuous. By definition $\left(Y_{\mathcal{S}}, f_{\mathcal{S}}\right) \leq\left(Y_{\mathcal{P}}, f_{\mathcal{P}}\right)$. Similarly, $\left(Y_{\mathcal{R}}, f_{\mathcal{R}}\right) \leq\left(Y_{\mathcal{P}}, f_{\mathcal{P}}\right)$.

The next two lemmas simplify the proof of the subsequent proposition.
Lemma R33.4.3 Let $\mathcal{Q}=\left\{W_{i}: i=1, \ldots, j\right\}$ be a j-star for the non-compact T_{2}
topological space (X, τ) and let $\left(Y_{\mathcal{Q}}, f_{\mathcal{Q}}\right)$ be the compactification determined by \mathcal{Q}, where $Y_{\mathcal{Q}}=X \cup\left\{q_{1}, \ldots, q_{j}\right\}$. Let C be a compact subset of X. Then
i) For $1 \leq t \leq j, W_{t} \cup\left\{q_{t}\right\}$ is open in $Y_{\mathcal{S}}$.
ii) For $1 \leq t \leq j,(X-C) \cup\left\{q_{t}\right\}$ is open in $Y_{\mathcal{S}}$.

Proof: Let $1 \leq t \leq j$. $\left(W_{t} \cup\left\{q_{t}\right\}\right) \cap X=W_{t}$, which is in τ by definition of a j-star, and $\left(X-\left(W_{t} \cup\left\{q_{t}\right\}\right)\right) \cap W_{t}=\emptyset$, which is compact. By definition $W_{t} \cup\left\{q_{t}\right\}$ is open in $Y_{\mathcal{Q}}$ and i) holds. Similarly $\left((X-C) \cup\left\{q_{t}\right\}\right) \cap X=X-C$, an open set, and $\left(X-\left((X-C) \cup\left\{q_{t}\right\}\right) \cap W_{t}=C \cap W_{t}\right.$, which is contained in the compact C and so has compact closure in X. By definition $(X-C) \cup\left\{q_{t}\right\}$ is open in $Y_{\mathcal{Q}}$ and ii) holds.

Lemma R33.4.4 Let $\mathcal{S}=\left\{G_{i}: i=1, \ldots, n\right\}$ be an n-star for the non-compact T_{2} topological space (X, τ) and let $\mathcal{R}=\left\{O_{i}: i=1, \ldots, m\right\}$ be an m-star for the same space. Let (Z, g) be a compactification of (X, τ) with continuous maps $\psi_{\mathcal{S}}: Z \rightarrow Y_{\mathcal{S}}$ and $\psi_{\mathcal{R}}: Z \rightarrow Y_{\mathcal{R}}$ such that $\psi_{\mathcal{S}} \circ g=f_{\mathcal{S}}$ and $\psi_{\mathcal{R}} \circ g=f_{\mathcal{R}}$. Let $z \in Z-g[X]$ with $\psi_{\mathcal{S}}(z)=s_{a}$ and $\psi_{R}(z)=r_{b}$. Then $G_{a} \cap O_{b}$ does not have compact closure in X.

Proof: Deny the conclusion. Since $g[X]$ is dense in Z, there is $\left\{x_{\alpha}\right\}$, a net in X, such that $\left\{g\left(x_{\alpha}\right)\right\}$ converges to z. By continuity $\left\{\psi_{\mathcal{S}}\left(g\left(x_{\alpha}\right)\right)\right\}$ converges to $\psi_{\mathcal{S}}(z)=s_{a}$ in $Y_{\mathcal{S}}$ and $\left\{\psi_{\mathcal{R}}\left(g\left(x_{\alpha}\right)\right)\right\}$ converges to $\psi_{\mathcal{R}}(z)=r_{b}$ in $Y_{\mathcal{R}}$, i.e., $\left\{x_{\alpha}\right\}$ converges to s_{a} in $Y_{\mathcal{S}}$ and to r_{b} in $Y_{\mathcal{R}}$. By the definitions of convergence and directed set, since $G_{a} \cup\left\{s_{a}\right\}$ and $O_{b} \cup\left\{r_{b}\right\}$ are open in $Y_{\mathcal{S}}, Y_{\mathcal{R}}$ respectively, there is α_{0} such that $\alpha \geq \alpha_{0}$ implies $x_{\alpha} \in G_{a} \cap O_{b}$. By the assumed compactness of $\overline{G_{a} \cap O_{b}}$, the net $\left\{x_{\alpha}\right\}_{\alpha \geq \alpha_{0}}$ has a subnet $\left\{x_{\alpha_{\beta}}\right\}$ converging to some x in $\overline{G_{a} \cap O_{b}} \subseteq X$. By continuity of $g,\left\{g\left(x_{\alpha_{\beta}}\right)\right\}$ converges to $g(x)$ in Z. Since $\left\{g\left(x_{\alpha_{\beta}}\right)\right\}$ is a subnet of $\left\{g\left(x_{\alpha}\right)\right\},\left\{g\left(x_{\alpha_{\beta}}\right)\right\}$ also converges to z. Since limits in the T_{2} space Z are unique, $z=g(x)$, which contradicts the hypothesis for z.

Proposition R33.4.5 Let $\mathcal{S}=\left\{G_{i}: i=1, \ldots, n\right\}$ be an n-star for the non-compact T_{2} topological space (X, τ) and let $\mathcal{R}=\left\{O_{i}: i=1, \ldots, m\right\}$ be an m-star for the same space. Let $\mathcal{P}=\left\{G_{i} \cap O_{j}: \overline{G_{i} \cap O_{j}}\right.$ is not compact in $\left.X\right\}$. Let (Z, g) be a compactification of (X, τ) with $\left(Y_{\mathcal{S}}, f_{\mathcal{S}}\right) \leq(Z, g)$ and $\left(Y_{\mathcal{R}}, f_{\mathcal{R}}\right) \leq(Z, g)$. Then $\left(Y_{\mathcal{P}}, f_{\mathcal{P}}\right) \leq(Z, g)$.

Proof: By hypothesis there are continuous maps $\psi_{\mathcal{S}}: Z \rightarrow Y_{\mathcal{S}}$ and $\psi_{\mathcal{R}}: Z \rightarrow Y_{\mathcal{R}}$ such that $\psi_{\mathcal{S}} \circ g=f_{\mathcal{S}}$ and $\psi_{\mathcal{R}} \circ g=f_{\mathcal{R}}$. Define $\phi: Z \rightarrow Y_{\mathcal{P}}$ as follows: For $z \in g[X]$ with $z=g(x)$, let $\phi(g(x))=x$. For $z \in Z-g[X]$, by R33.3.2 $\psi_{\mathcal{S}}(z)=s_{i}$ for some $1 \leq i \leq n$ and $\psi_{\mathcal{R}}(z)=r_{j}$ for some $1 \leq j \leq m$. By R33.4.4 $(i, j) \in P$ and so define $\phi(z)=p_{(i, j)}$. By definition $\phi \circ g=f_{\mathcal{P}}$. To see that ϕ is continuous, let G be open in $Y_{\mathcal{P}}$. It is easy to check that $\phi^{-1}[G] \cap g[X]=g[X \cap G]$. Since X is locally compact, $g[X]$ is open in Z and so the homeomorphism $g: X \rightarrow g[X]$ is an open map into Z. By definition of the topology on $Y_{\mathcal{P}}, X \cap G$ is open in X. Thus $\phi^{-1}[G]$ is a neighborhood of every point in $\phi^{-1}[G] \cap g[X]$. Now let $z \in \phi^{-1}[G]-g[X]$ with $\psi_{\mathcal{S}}(z)=s_{i}$ and $\psi_{\mathcal{R}}(z)=r_{j}$. Then $\phi(z)=p_{(i, j)}$ is in G and so $\overline{(X-G) \cap\left(G_{i} \cap O_{j}\right)}$ is compact in X. By R33.4.3 $\left\{s_{i}\right\} \cup G_{i}$ and $\left\{s_{i}\right\} \cup\left(X-\overline{(X-G) \cap\left(G_{i} \cap O_{j}\right)}\right)$ are open in $Y_{\mathcal{S}}$. Similarly $\left\{r_{j}\right\} \cup O_{j}$ and $\left\{r_{j}\right\} \cup\left(X-\overline{(X-G) \cap\left(G_{i} \cap O_{j}\right)}\right)$ are open in $Y_{\mathcal{R}}$. Let

$$
\left.\begin{array}{rl}
V & =\left(\left\{s_{i}\right\} \cup G_{i}\right) \cap\left(\left\{s_{i}\right\} \cup\left(X-\overline{(X-G) \cap\left(G_{i} \cap O_{j}\right)}\right)\right.
\end{array}\right) \text { and } .
$$

V is open in $Y_{\mathcal{S}}$ and W is open in $Y_{\mathcal{R}}$ and so by continuity $\psi_{\mathcal{S}}^{-1}[V] \cap \psi_{\mathcal{R}}^{-1}[W]$ is open in Z. Because $\psi_{\mathcal{S}}(z)=s_{i}$ and $\psi_{\mathcal{R}}(z)=r_{j}, z \in \psi_{\mathcal{S}}^{-1}[V] \cap \psi_{\mathcal{R}}^{-1}[W]$. Now let $w \in \psi_{\mathcal{S}}^{-1}[V] \cap \psi_{\mathcal{R}}^{-1}[W]$.

If $w \in Z-g[X]$, because the only element of $Y_{\mathcal{S}}-X$ in V is $s_{i}, \psi_{\mathcal{S}}(w)=s_{i}$. Similarly, $\psi_{\mathcal{R}}(w)=r_{j}$ and so by definition $\phi(w)=p_{(i, j)} \in G$. Thus $w \in \phi^{-1}[G]$. Now assume $w=g(x)$ for some $x \in X . \underline{\psi_{\mathcal{S}}}(g(x))=f_{\mathcal{S}}(x)=x \in V$ and similarly $\psi_{\mathcal{R}}(g(x))=x \in W$ so that $x \in\left(G_{i} \cap O_{j}\right) \cap\left(X-\overline{(X-G) \cap\left(G_{i} \cap O_{j}\right)}\right)$. Then x must be in G because otherwise x would be in $\overline{(X-G) \cap\left(G_{i} \cap O_{j}\right)}$. To summarize, $z \in \psi_{\mathcal{S}}^{-1}[V] \cap \psi_{\mathcal{R}}^{-1}[W] \subseteq \phi^{-1}[G]$ so that $\phi^{-1}[G]$ is a neighborhood of z. Since $\phi^{-1}[G]$ is a neighborhood of each of its points, it is open and ϕ is continuous as required.

Corollary R33.4.6 Let $\mathcal{S}=\left\{G_{i}: i=1, \ldots, n\right\}$ be an n-star for the non-compact T_{2} topological space (X, τ) and let $\mathcal{R}=\left\{O_{i}: i=1, \ldots, m\right\}$ be an m-star for the same space. Let $\mathcal{P}=\left\{G_{i} \cap O_{j}: \overline{G_{i} \cap O_{j}}\right.$ is not compact in $\left.X\right\}$. Then the compactification $\left(Y_{\mathcal{P}}, f_{\mathcal{P}}\right)$ acts as the supremum of $\left(Y_{\mathcal{S}}, f_{\mathcal{S}}\right)$ and $\left(Y_{\mathcal{R}}, f_{\mathcal{R}}\right)$.

Proof: R33.4.2 shows it is an upper bound and R33.4.5 shows it is the least upper bound.

Corollary R33.4.7 Let $\left\{\mathcal{S}_{j}: 1 \leq j \leq m\right\}$ be a finite collection of finite stars for the non-compact T_{2} topological space (X, τ). Then there is a k-star \mathcal{P} for (X, τ) such that the compactification $\left(Y_{\mathcal{P}}, f_{\mathcal{P}}\right)$ acts as the supremum of the collection $\left\{\left(Y_{\mathcal{S}_{j}}, f_{\mathcal{S}_{j}}\right): 1 \leq j \leq m\right\}$.

Proof: By induction: The claim is trivial for $m=1$ and true for $m=2$ by R33.4.6. If it holds for any collection of size m, let a collection of size $m+1$ be given. Apply the induction hypothesis to obtain \mathcal{P}^{*} such that compactification $\left(Y_{\mathcal{P}^{*}}, f_{\mathcal{P}^{*}}\right)$ acts as the supremum of $\left\{\left(Y_{\mathcal{S}_{j}}, f_{\mathcal{S}_{j}}\right): 1 \leq j \leq m\right\}$. Apply R33.4.6 to obtain \mathcal{P} such that $\left(Y_{\mathcal{P}}, f_{\mathcal{P}}\right)$ acts as the supremum of $\left(Y_{\mathcal{S}_{m+1}}, f_{\mathcal{S}_{m+1}}\right)$ and $\left(Y_{\mathcal{P}^{*}}, f_{\mathcal{P}^{*}}\right)$. Then $\left(Y_{\mathcal{P}}, f_{\mathcal{P}}\right)$ acts as the supremum of $\left\{\left(Y_{\mathcal{S}_{j}}, f_{\mathcal{S}_{j}}\right): 1 \leq j \leq m+1\right\}$.

Comment: If needed, the k-star \mathcal{P} could be described explicitly as in R33.4.1.
Corollary R33.4.8 Let $\left\{\left(Y_{j}, g_{j}\right): 1 \leq j \leq m\right\}$ be a collection of finite-point compactifications of the non-compact T_{2} space (X, τ) and let (Z, g) act as the supremum of $\left\{\left(Y_{j}, g_{j}\right): 1 \leq j \leq m\right\}$. Then (Z, g) is a finite-point compactification of (X, τ).

Proof: By R5.1.2, for each $1 \leq j \leq m$, there is a finite star \mathcal{S}_{j} such that $\left(Y_{\mathcal{S}_{j}}, f_{\mathcal{S}_{j}}\right)$ is equivalent to $\left(Y_{j}, g_{j}\right)$. By R33.4.7 there is a k-star \mathcal{P} for (X, τ) such that the compactification $\left(Y_{\mathcal{P}}, f_{\mathcal{P}}\right)$ acts as the supremum of the collection $\left\{\left(Y_{\mathcal{S}_{j}}, f_{\mathcal{S}_{j}}\right): 1 \leq j \leq m\right\}$. By the transitivity of equivalence the k-point compactification $\left(Y_{\mathcal{P}}, f_{\mathcal{P}}\right)$ is equivalent to (Z, g), which is therefore also a k-point compactification.

Comment: This could also be derived in other ways, e.g., by using the representation of a finite supremum from R3.1.2.

Lemma R33.4.9 Let (X, τ) be a $T_{3 \frac{1}{2}}$ space and let $\left\{\left(Y_{\alpha}, f_{\alpha}\right): \alpha \in \Delta\right\}$ be a nonempty set of compactifications of (X, τ). Let (Z, g) be a compactification of (X, τ). Let Δ^{*} be the set of all non-empty finite subsets of Δ and, for each $F \in \Delta^{*}$, let $\left(Y_{F}, f_{F}\right)$ be a compactification which acts as the supremum of $\left\{\left(Y_{\alpha}, f_{\alpha}\right): \alpha \in F\right\}$. Then (Z, g) acts as the supremum of $\left\{\left(Y_{\alpha}, f_{\alpha}\right): \alpha \in \Delta\right\}$ if and only if (Z, g) acts as the supremum of $\left\{\left(Y_{F}, f_{F}\right): F \in \Delta^{*}\right\}$.

Proof: First assume (Z, g) act as the supremum of $\left\{\left(Y_{\alpha}, f_{\alpha}\right): \alpha \in \Delta\right\}$. For any F in Δ^{*}, since $F \subseteq \Delta,(Z, g)$ is an upper bound of $\left\{\left(Y_{\alpha}, f_{\alpha}\right): \alpha \in F\right\}$ and so $(Z, g) \geq\left(Y_{F}, f_{F}\right)$. Thus (Z, g) is an upper bound of $\left\{\left(Y_{F}, f_{F}\right): F \in \Delta^{*}\right\}$. Now let (W, h) be an upper bound of $\left\{\left(Y_{F}, f_{F}\right): F \in \Delta^{*}\right\}$. For every $\alpha \in \Delta,\left(Y_{\{\alpha\}}, f_{\{\alpha\}}\right)$ is equivalent to $\left(Y_{\alpha}, f_{\alpha}\right)$. Thus (W, h) is an upper bound of $\left\{\left(Y_{\alpha}, f_{\alpha}\right): \alpha \in F\right\}$ and so $(W, h) \geq(Z, g)$, i.e., (Z, g) acts as
the least upper bound of $\left\{\left(Y_{F}, f_{F}\right): F \in \Delta^{*}\right\}$. Now assume (Z, g) acts as the supremum of $\left\{\left(Y_{F}, f_{F}\right): F \in \Delta^{*}\right\}$. Since, for every $\alpha \in \Delta,\left(Y_{\{\alpha\}}, f_{\{\alpha\}}\right)$ is equivalent to $\left(Y_{\alpha}, f_{\alpha}\right)$, (Z, g) is an upper bound of $\left\{\left(Y_{\alpha}, f_{\alpha}\right): \alpha \in \Delta\right\}$. As in the first half of this proof, an upper bound (W, h) of $\left\{\left(Y_{\alpha}, f_{\alpha}\right): \alpha \in \Delta\right\}$ is also an upper bound of $\left\{\left(Y_{F}, f_{F}\right): F \in \Delta^{*}\right\}$ and so $(W, h) \geq(Z, g)$. Thus (Z, g) acts as the least upper bound of $\left\{\left(Y_{\alpha}, f_{\alpha}\right): \alpha \in \Delta\right\}$.

Proposition R33.4.10 Let (X, τ) be a non-compact, locally compact T_{2} space and let $\left\{\left(Y_{\alpha}, f_{\alpha}\right): \alpha \in \Delta\right\}$ be a non-empty set of finite-point compactifications of (X, τ). Let the compactification (Z, g) act as the supremum of $\left\{\left(Y_{\alpha}, f_{\alpha}\right): \alpha \in \Delta\right\}$. Then there is a normal basis \mathcal{Z} for (X, τ) such that $(\omega(\mathcal{Z}), \iota \mathcal{Z})$ is equivalent to (Z, g).

Proof: Let Δ^{*} be the set of all non-empty finite subsets of Δ and, for each $F \in \Delta^{*}$, let $\left(Y_{F}, f_{F}\right)$ be a compactification which acts as the supremum of $\left\{\left(Y_{\alpha}, f_{\alpha}\right): \alpha \in F\right\}$. By R33.4.8 each $\left(Y_{F}, f_{F}\right)$ is a finite-point compactification and so by R 5.1 .2 there is a finite star \mathcal{S}_{F} for (X, τ) such that $\left(Y_{\mathcal{S}_{F}}, f_{\mathcal{S}_{F}}\right)$ is equivalent to $\left(Y_{F}, f_{F}\right)$. Next it will be shown that $\left\{\mathcal{Z}\left(\mathcal{S}_{F}\right): F \in \Delta^{*}\right\}$ has the directed set property under containment. Let $F, H \in \Delta^{*}$. $F \cup H$ is also in Δ^{*} and $\left(Y_{F \cup H}, f_{F \cup H}\right)$ is an upper bound of $\left\{\left(Y_{\alpha}, f_{\alpha}\right): \alpha \in F\right\}$ and so $\left(Y_{F \cup H}, f_{F \cup H}\right) \geq\left(Y_{F}, f_{F}\right)$. Similarly $\left(Y_{F \cup H}, f_{F \cup H}\right) \geq\left(Y_{H}, f_{H}\right)$ and by equivalence the same relationships hold for the compactifications determined by $\mathcal{S}_{F \cup H}, \mathcal{S}_{F}$, and \mathcal{S}_{H}. By R33.2.5 and R33.3.8 $\mathcal{Z}\left(\mathcal{S}_{F \cup H}\right) \supseteq \mathcal{Z}\left(\mathcal{S}_{F}\right) \cup \mathcal{Z}\left(\mathcal{S}_{H}\right)$ and the claim is verified. By R9.2.1 $\mathcal{Z}=\cup\left\{\mathcal{Z}\left(\mathcal{S}_{F}\right): F \in \Delta^{*}\right\}$ is a normal basis for (X, τ). Because of R33.3.9 the hypothesis of R9.Add. 5 holds and so $\left(\omega(\mathcal{Z}), \iota_{\mathcal{Z}}\right)$ acts as a supremum for $\left\{\left(\omega\left(\mathcal{Z}\left(\mathcal{S}_{F}\right)\right), \iota_{\mathcal{Z}\left(\mathcal{S}_{F}\right)}\right): F \in \Delta^{*}\right\}$ and by equivalence for $\left\{\left(Y_{F}, f_{F}\right): F \in \Delta^{*}\right\}$. By R33.4.9 $\left(\omega(\mathcal{Z}), \iota_{\mathcal{Z}}\right)$ acts as the supremum of $\left\{\left(Y_{\alpha}, f_{\alpha}\right): \alpha \in \Delta\right\}$ and so $\left(\omega(\mathcal{Z}), \iota_{\mathcal{Z}}\right)$ is equivalent to (Z, g).

In other words, the previous proposition says that a supremum of finite-point compactifications must be a Wallman compactification.

Albert J. Klein 2023
http://www.susanjkleinart.com/compactification/

References

1. Magill, K.D., N-point Compactifications, Amer. Math. Monthly 72(1965) 10751081.
2. This website, P3: Normal Bases
3. This website, R3: Representation of Suprema
4. This website, R5: Finite-Point Compactifications
5. This website, R9: Directed Sets of Normal Bases
