Finite-Point Compactifications

Let (X, τ) be a $T_{3\frac{1}{2}}$ space. A T_2 compactification of X, say (Y, f), is a finite-point compactification provided |Y - f[X]| is finite. If such a compactification exists, clearly f[X] would be open in Y, a fact which is equivalent to the local compactness of X. (See, for example, Wilansky [4].) Consequently, unless explicitly stated otherwise, (X, τ) is also assumed to be locally compact throughout this section. Notation and facts from [5] will be used freely. Only T_2 compactifications are considered.

General Topological Facts

In addition to the one-point compactification, which is described in most introductory topology books, arbitrary finite-point compactifications have been studied by Magill [2]. (Also see [3].) The general result, which assumes only a T_2 space, is as follows.

Theorem R5.1.1[Magill] Let (X, τ) be a Hausdorff space. The following are equivalent:

i) X has an n-point compactification for some natural number n.

ii) X is locally compact and contains a compact subset K whose complement is the union of n pairwise disjoint open sets $\{G_i : i = 1, ..., n\}$ such that $K \cup G_i$ is not compact for each i.

Outline of proof: To see that i) implies ii), let (Z, g) be a T_2 compactification of X with $Z-g[X] = \{z_1, \ldots, z_n\}$. Pick pairwise disjoint open subsets of Z, O_1, \ldots, O_n , with $z_i \in O_i$. Then ii) can be verified for $G_i = g^{-1}[O_i]$ and $K = g^{-1}[Z - \bigcup_{i=1}^n O_i]$. The fact that z_i is in the Z-closure of $g[X] \cap O_i$ leads quickly to the non-compactness of $K \cup G_i$. For the converse, let p_1, \ldots, p_n be n distinct objects not in X, let $Y = X \cup \{p_1, \ldots, p_n\}$, and let $f: X \to Y$ by f(x) = x. Let $\sigma = \{O \subseteq Y : O \cap X \text{ is open in } X \text{ and } p_i \in O \Rightarrow (X - O) \cap G_i \text{ has compact closure in } X\}$. Then σ is a topology for Y and (Y, f) is an n-point compactification of X.

As in [2] a pairwise disjoint family $\{G_i : i = 1, ..., n\}$ of open sets whose union has a compact complement K such that $K \cup G_i$ is not compact for each i will be called an n-star of X. Given an n-star of X, the T_2 compactification constructed in the proof above will be called the n-point compactification determined by the n-star. The next proposition shows that such compactifications provide representatives of every finite-point compactification class.

Proposition R5.1.2 Let (Z,g) be an *n*-point compactification of X. Then there is an *n*-star for X such that the *n*-point compactification of X determined by this *n*-star is equivalent to (Z,g).

Outline of proof: As in the proof of R5.1.1, let $Z - g[X] = \{z_1, \ldots, z_n\}$ and pick pairwise disjoint open subsets of Z, O_1, \ldots, O_n , with $z_i \in O_i$. Then $\{G_i = g^{-1}[O_i] : i = 1, \ldots, n\}$ is an *n*-star for X. Let (Y, f) be the *n*-point compactification determined by this *n*-star. Define $h: Z \to Y$ by h(g(x)) = f(x) = x on g[X] and $h(z_i) = p_i$ for $i = 1, \ldots, n$. Then $h \circ g = f$ by definition and h is easily seen to be a bijection. For continuity, let O be open in Y and let $z \in h^{-1}[O]$. If z = g(x) for some x, then $z \in g[f^{-1}[O \cap X]]$, which is an open subset of $h^{-1}[O]$. If $z = z_i$, then $p_i \in O$ so that $c_X(G_i \cap (X - O))$ is compact. Then $z_i \in O_i - g[c_X(G_i \cap (X - O))]$, which is an open subset of $h^{-1}[O]$. Thus h is continuous and, since Z is compact and Y is T_2 , a homeomorphism. **Corollary R5.1.3** Let (Z, g) be an *n*-point compactification of X. For each natural number m with $m \leq n, X$ has an m-point compactification.

Proof: Let $\{G_i : i = 1, ..., n\}$ be an *n*-star determined by (Z, g). Let $G_m^* = \bigcup_{i=m}^n G_i$. Then $\{G_1, \ldots, G_{m-1}, G_m^*\}$ is an *m*-star, which determines an *m*-point compactification of X.

Proposition R5.1.4 Let (Z_1, g_1) be an *n*-point compactification of *X*, and let (Z_2, g_2) be an *m*-point compactification of *X*. If (Z_1, g_1) is equivalent to (Z_2, g_2) , then n = m.

Proof: Let $h : Z_1 \to Z_2$ be the homeomorphism with $h \circ g_1 = g_2$. That equation implies that h induces a bijection between the finite sets $Z_1 - g_1[X]$ and $Z_2 - g_2[X]$. Thus n = m.

Theorem R5.1.5 [Magill] Let $\{G_i : i = 1, ..., n\}$ and $\{O_i : i = 1, ..., n\}$ be *n*-stars for the space X. Let $K_1 = X - \bigcup \{G_i : i = 1, ..., n\}$, and let (Y_1, f_1) and (Y_2, f_2) be the *n*-point compactifications determined by the *n*-stars. Then (Y_1, f_1) is equivalent to (Y_2, f_2) if and only if there exists a permutation σ of $\{1, ..., n\}$ such that $(K_1 \cup G_i) \cap (X - O_{\sigma(i)})$ is compact for each *i*.

Outline of proof: Let $Y_1 = X \cup \{p_1, \ldots, p_n\}$ and $Y_2 = X \cup \{q_1, \ldots, q_n\}$ with topologies and embeddings as described above. First assume the two compactifications are equivalent, so that there is a homeomorphism $h: Y_1 \to Y_2$ with $h \circ f_1 = f_2$, i.e., $h|_X$ is the identity map. h induces a permutation σ , where $\sigma(i) = j$ when $h(p_i) = q_j$. Fix i. Since $\{q_{\sigma(i)}\} \cup O_{\sigma(i)}$ is open in Y_2 , its inverse image under h, $\{p_i\} \cup O_{\sigma(i)}$, is open in Y_1 , so that $(X - O_{\sigma(i)}) \cap G_i$ has compact closure in X. It follows easily that the X-closed set $(K_1 \cup G_i) \cap (X - O_{\sigma(i)})$ is contained in a compact set and so is compact itself. For the converse, define $h: Y_1 \to Y_2$ by h(x) = x for $x \in X$ and $h(p_i) = q_{\sigma(i)}$. For O open in Y_2 , $h^{-1}[O] \cap X = O \cap X$, which is open in X. If $p_i \in h^{-1}[O]$, then $(X - O) \cap G_i$ is contained in $[(K_1 \cup G_i) \cap (X - O_{\sigma(i)})] \cup$ $[(X - O) \cap O_{\sigma(i)}]$ and so has compact closure. Thus h is continuous. Clearly h is the homeomorphism required to show that the two compactifications are equivalent.

Let \mathbb{R} denote the reals, \mathbb{C} the complex plane, and \mathbb{R}^m *m*-dimensional space, all with the usual topologies. Magill presents the following examples.

Corollary R5.1.6 \mathbb{C} and \mathbb{R}^m with $m \ge 2$ do not have *n*-point compactifications for $n \ge 2$.

Proof: By R5.1.3 it is sufficient to show the non-existence of 2-point compactifications. Deny and let $\{G_1, G_2\}$ be a 2-star. Let *B* be a ball containing the complement of $G_1 \cup G_2$. For these spaces, the complement of *B* must be connected but $\{G_1, G_2\}$ would induce a separation. Contradiction.

Corollary R5.1.7 IR has a 2-point compactification but does not have an *n*-point compactification for $n \ge 3$.

Proof: $\{(-\infty, 0), (0, \infty)\}$ is a 2-star for \mathbb{R} . Now suppose $\{G_1, G_2, G_3\}$ is a 3-star for \mathbb{R} , and let $\mathbb{R}-(G_1 \cup G_2 \cup G_3)$ be contained in [a, b]. Since $(-\infty, a)$ and (b, ∞) are connected, each has non-empty intersection with at most one G_i . The leftover G_i would have to be contained in [a, b], which leads to a contradiction.

Corollary R5.1.8 All 2-point compactifications of **R** are equivalent.

Proof: Let $\{G_1, G_2\}$ and $\{O_1, O_2\}$ be 2-stars of \mathbb{R} , let $K_1 = \mathbb{R} - (G_1 \cup G_2)$, and suppose $K_1 \subseteq [a, b]$. Since $(-\infty, a)$ and (b, ∞) are both connected, each must be entirely contained in one G_i and one O_i . Use that fact to define σ . Without loss of generality, assume $(-\infty, a)$ is a subset of G_1 and $O_{\sigma(1)}$, while (b, ∞) is contained in G_2 and $O_{\sigma(2)}$. Then, for $i \in \{1, 2\}$, the closed set $(K_1 \cup G_i) \cap (\mathbb{R} - O_{\sigma(i)})$ is contained in [a, b], and so the compactifications are equivalent by R5.1.5.

For what follows certain equivalence relations closely related to n-stars will be used. As is clear from the following definition, each n-compatible equivalence relation on X determines one n-star, while an n-star determines at least one n-compatible equivalence relation.

Definition R5.1.9 Let (X, τ) be a T_2 space. An equivalence relation E on X is n-compatible provided E has finitely many distinct equivalence classes, exactly n of which form an n-star of X.

If E is an n-compatible equivalence relation on X, (Y, ι_E) will denote the n-point compactification determined as above by the associated n-star, and $\tau(E)$ will denote the topology for Y. The following facts show that these notions simplify in the discrete case.

Proposition R5.1.10 Let X be an infinite discrete space and let E be an equivalence relation on X. Then E is *n*-compatible if and only if E has finitely many distinct equivalence classes, exactly n of which are infinite.

Proof: This follows easily because distinct equivalence classes must be disjoint and compactness is equivalent to finiteness in a discrete space.

Proposition R5.1.11 Let X be an infinite discrete space and E an n-compatible equivalence relation on X. Let $\{e_1, \ldots, e_n\}$ be the distinct infinite equivalence classes of E. Then $\tau(E) = \{O \subseteq Y : p_i \in O \Rightarrow (X - O) \cap e_i \text{ is finite }\}.$

Proof: This follows easily since every $X \cap O$ is open and having compact closure in X is equivalent to finiteness.

Proposition R5.1.12 Let X be an infinite discrete space and let D and E be ncompatible equivalence relations on X. Let $\{d_1, \ldots, d_n\}$ and $\{e_1, \ldots, e_n\}$ be the distinct infinite equivalence classes of D and E respectively. Then (Y, ι_D) and (Y, ι_E) are equivalent compactifications if and only if there is a permutation σ of $\{1, \ldots, n\}$ with the property that $d_i \cap (X - e_{\sigma(i)})$ is finite for each i.

Proof: This merely restates R5.1.5 in the present context.

Magill uses infinite discrete spaces as examples which have infinitely many nonequivalent *n*-compactifications for $n \ge 2$. Such examples are implicit in R5.1.12. It also provides simple examples of non-equivalent compactifications which are homeomorphic. With X discrete, it can be shown that, in the notation of R5.1.12, $(Y, \tau(D))$ and $(Y, \tau(E))$ are homeomorphic if $|X| = \aleph_0$ or if a σ exists such that $|d_i| = |e_{\sigma(i)}|$ for each *i*.

Uniform Space Constructions

Basic facts and notation for uniform spaces, which will be used in this subsection, can be found in [6].

Definition R5.2.1 [1] Let *E* be an equivalence relation on set *X*. \mathcal{U}_E denotes $\{U: X \times X \supseteq U \supseteq E\}$.

Lemma R5.2.2 [1] Let E be an equivalence relation on X. Then \mathcal{U}_E is a uniformity for X, and \mathcal{U}_E is totally bounded if and only if E has finitely many distinct equivalence classes.

Proof: The key to the first assertion is that $E \circ E = E$; the second follows easily since total boundedness is, in this case, equivalent to the equation $X = \bigcup_{i=1}^{n} E[x_i]$ for some

finite set $x_1 \ldots x_n$.

Recall the following notation from [8]: For (X, τ) a non-compact locally compact Hausdorff space, \mathcal{U}_m denotes $\{U : U \supseteq \bigcup_{i=1}^n O_i \times O_i \text{ where } O_1, \ldots, O_n \text{ are an open cover}$ of X and at least one O_i has a compact complement}. It is shown in [8] that \mathcal{U}_m is a totally bounded uniformity with $\tau(\mathcal{U}_m) = \tau$ and that a separated completion of (X, \mathcal{U}_m) determines the compactification class of the one-point compactification for X, i.e., in the notation of [8], $\Psi_0(\mathcal{U}_m) = [(X^+, \iota^+)]$. Also recall that $\mathcal{TB}(X)$ denotes the set of totally bounded uniformities on X that generate τ .

Proposition R5.2.3 Let (X, τ) be a non-compact, locally compact T_2 space. Let E be an *n*-compatible equivalence relation on X with each E equivalence class open in τ . Then $\mathcal{U}_m \vee \mathcal{U}_E \in \mathcal{TB}(X)$ and $\Psi_0(\mathcal{U}_m \vee \mathcal{U}_E) = [(Y, \iota_E)].$

Proof: By P2.13 $\mathcal{U}_m \lor \mathcal{U}_E$ is totally bounded and and by P2.14 $\tau(\mathcal{U}_m \lor \mathcal{U}_E) = \tau \lor \tau(\mathcal{U}_E)$. Since $E[x] \in \tau$ for all $x, \tau(\mathcal{U}_E) \subseteq \tau$ and so $\mathcal{U}_m \lor \mathcal{U}_E \in \mathcal{TB}(X)$.

Now let O_1, \ldots, O_n denote the equivalence classes of E which form the *n*-star, and let $\mathcal{V} \in \mathcal{TB}(X)$ be such that $\Psi_0(\mathcal{V}) = [(Y, \iota_E)]$. Note that \mathcal{V} is simply the subspace uniformity on X induced from the unique uniformity for Y, i.e., the collection of all neighborhoods of the diagonal in $Y \times Y$. (See P2.4 in [6].) One such neighborhood is $N = \bigcup_{i=1}^{n+j} G_i \times G_i$ where $G_i = O_i \cup \{p_i\}$ for $i = 1, \ldots, n$ and G_{n+1}, \ldots, G_{n+j} are the remaining equivalence classes of E. Clearly $N \cap (X \times X) = E$ and so $\mathcal{U}_E \subseteq \mathcal{V}$. Since $[(X^+, \iota^+)] \leq [Y, \iota_E)]$, by R1.5 $\mathcal{U}_m \subseteq \mathcal{V}$. Thus $\mathcal{U}_m \vee \mathcal{U}_E \subseteq \mathcal{V}$.

To verify the reverse containment, let $V \in \mathcal{V}$, and let M be a neighborhood of the diagonal in Y such that $V = (X \times X) \cap M$. For each $x \in X$, there exists $O_x \in \tau$ with $O_x \times O_x \subseteq M$. Also there exist H_1, \ldots, H_n open in Y with $p_i \in H_i$ and $H_i \times H_i \subseteq M$. For $S = \bigcup_{i=1}^n O_i$, the complement is compact and so there is a finite set Δ_0 such that $X - S \subseteq \bigcup \{O_x : x \in \Delta_0\}$. Let $U_0 = (\bigcup \{O_x \times O_x : x \in \Delta_0\}) \cup (S \times S)$. Clearly $U_0 \in \mathcal{U}_m$. Since $p_i \in H_i$ and each O_i is clopen, $T_i = (X - H_i) \cap O_i$ is compact, and so there is Δ_i such that $T_i \subseteq \bigcup \{O_x \times O_x : x \in \Delta_i\}$. Let $U_i = (\bigcup \{O_x \times O_x : x \in \Delta_i\}) \cup (X - T_i) \times (X - T_i)$. Then U_1, \ldots, U_n are also in \mathcal{U}_m . To finish it is sufficient to show that $([\bigcap_{i=0}^n U_i] \cap E) \subseteq V$. Let (x, y) be in the intersection with $x \neq y$. If (x, y) is in $\bigcup \{O_x \times O_x : x \in \Delta_i\}$ for any i, clearly (x, y) is in V. Thus assume (x, y) is in $S \times S$ and $(X - T_i) \times (X - T_i)$ for every i. Since (x, y) is in both E and $S \times S$, $x, y \in O_j$ for some j. Then $x, y \notin T_j$ implies $x, y \in H_j$.

Proposition R5.2.4 Let X be an infinite discrete space. Let E be an n-compatible equivalence relation on X. Then $\mathcal{U}_m \vee \mathcal{U}_E \in \mathcal{TB}(X)$ and $\Psi_0(\mathcal{U}_m \vee \mathcal{U}_E) = [(Y, \iota_E)]$.

Proof: In the discrete case the assumption that every E-equivalence class is open is automatically satisfied. This is a special case of R5.2.3.

Note that for two *n*-compatible equivalence relations on a discrete X, E and F, R5.1.12 and R1.5 can be combined to characterize $\mathcal{U}_m \vee \mathcal{U}_E = \mathcal{U}_m \vee \mathcal{U}_F$. It can also be shown that $(X, \mathcal{U}_m \vee \mathcal{U}_E)$ and $(X, \mathcal{U}_m \vee \mathcal{U}_F)$ are unimorphic if there is a one-to-one correspondence between the infinite equivalence classes of E and F such that corresponding classes have the same cardinality. This leads to examples of unimorphic spaces which determine nonequivalent compactifications.

Normal Basis Constructions for Discrete Spaces

Basic facts and notation used here can be found in [7]. Throughout this subsection

X will denote an infinite discrete space and E an n-compatible equivalence relation on X with distinct infinite equivalence classes C_1, \ldots, C_n .

Definition R5.3.1 Let $S \subseteq X$ and let $\Delta \subseteq \{1, \ldots, n\}$. S is associated with Δ if and only if $S \cap C_i$ is finite for all $i \in \Delta$ and $(X - S) \cap C_i$ is finite for all $i \notin \Delta$.

Definition R5.3.2

 $\mathcal{Z}(E) = \{ S \subseteq X : S \text{ is associated with } \Delta \text{ for some } \Delta \subseteq \{1, \dots, n\} \}.$

Proposition R5.3.3 $\mathcal{Z}(E)$ is a normal basis for X.

Proof: Note that finite subsets of X are associated with $\{1, \ldots, n\}$ and so are in $\mathcal{Z}(E)$. Also, if $Z \in \mathcal{Z}(E)$ is associated with Δ , then X - Z is associated with $\{1, \ldots, n\} - \Delta$ and thus is also in $\mathcal{Z}(E)$. Since $x \notin S$ means $S \subseteq X - \{x\}$, $\mathcal{Z}(E)$ is a base for the closed sets. For $Z_1, Z_2 \in \mathcal{Z}(E)$ associated with Δ_1, Δ_2 respectively, $Z_1 \cup Z_2$ is associated with $\Delta_1 \cap \Delta_2$ and $Z_1 \cap Z_2$ is associated with $\Delta_1 \cup \Delta_2$. Thus $\mathcal{Z}(E)$ is closed under finite unions and intersections. The third requirement of definition P3.1 is satisfied because, for $x \notin S$, $\{x\} \in \mathcal{Z}(E)$ and $S \cap \{x\} = \emptyset$. The fourth is equally straightforward: for $Z_1, Z_2 \in \mathcal{Z}(E)$ with $Z_1 \cap Z_2 = \emptyset$, $X - Z_1$ and $X - Z_2$ are in $\mathcal{Z}(E)$ and form the needed cover.

Definition R5.3.4 Let $i \in \{1, ..., n\}$.

 $\mathcal{G}_i = \{S \in \mathcal{Z}(E) : S \text{ is associated with some } \Delta \text{ contained in } \{1, \dots, n\} - \{i\}\}.$

Lemma R5.3.5 An element of $\mathcal{Z}(E)$ is associated with a unique subset of $\{1, \ldots, n\}$. Proof: Deny and pick Z in $\mathcal{Z}(E)$ associated with both Δ_1 and Δ_2 . For any *i* in $(\Delta_1 - \Delta_2) \cup (\Delta_2 - \Delta_1)$, both $Z \cap C_i$ and $(X - Z) \cap C_i$ must be finite, which contradicts the assumption that C_i is infinite.

Proposition R5.3.6 For $i \in \{1, \ldots, n\}$, \mathcal{G}_i is a $\mathcal{Z}(E)$ -ultrafilter.

Proof: The co-finite subsets of X, being associated with \emptyset , are in \mathcal{G}_i , while \emptyset is not since it is associated with $\{1, \ldots, n\}$. Let S_1, S_2 in $\mathcal{Z}(E)$ be associated with Δ_1 and Δ_2 respectively. Since $S_1 \cap S_2$ is associated with $\Delta_1 \cup \Delta_2$, clearly \mathcal{G}_i is closed under finite intersections. If $S_1 \in \mathcal{G}_i$ and $S_1 \subseteq S_2$, then $\Delta_2 \subseteq \Delta_1$ so that $S_2 \in \mathcal{G}_i$. Thus \mathcal{G}_i is a $\mathcal{Z}(E)$ -filter. Now suppose \mathcal{F} is a $\mathcal{Z}(E)$ -filter with $\mathcal{G}_i \subseteq \mathcal{F}$. If $Z \in \mathcal{F}$ is associated with Δ and $i \in \Delta$, then X - Z, which is associated with $\{1, \ldots, n\} - \Delta$, must be in \mathcal{G}_i . That implies $Z \cap (X - Z) \in \mathcal{F}$, a contradiction. Thus \mathcal{G}_i is a $\mathcal{Z}(E)$ -ultrafilter.

Proposition R5.3.7 The distinct, non-point ultrafilters in $\omega(\mathcal{Z}(E))$ are $\mathcal{G}_1, \ldots, \mathcal{G}_n$.

Proof: For all i, C_i is associated with $\{1, \ldots, n\} - \{i\}$ and so $C_i \in \mathcal{G}_i$ and $\mathcal{G}_i \neq \mathcal{G}_j$ if $j \neq i$. Since all finite sets are associated with $\{1, \ldots, n\}$, the ultrafilter \mathcal{G}_i does not contain any finite set. Thus $\mathcal{G}_1, \ldots, \mathcal{G}_n$ are distinct, non-point $\mathcal{Z}(E)$ -ultrafilters. Now let \mathcal{F} be a $\mathcal{Z}(E)$ -ultrafilter with $\mathcal{F} \neq \mathcal{G}_i$ for all i. Pick F_i associated with Δ_i such that $F_i \in \mathcal{F}$ but $F_i \notin \mathcal{G}_i$. Then $i \in \Delta_i$ for each i. Let $F = \bigcap_{i=1}^n F_i$. F is in \mathcal{F} and is associated with $\bigcup_{i=1}^n \Delta_i = \{1, \ldots, n\}$. That means F is finite. Since only point-ultrafilters contain any finite sets, \mathcal{F} must be \mathcal{F}_x for some x.

Proposition R5.3.8 ($\omega(\mathcal{Z}(E)), \iota_{\mathcal{Z}(E)}$) is equivalent to (Y, ι_E) .

Proof: Define $h: \omega(\mathcal{Z}(E)) \to Y$ by $h(\mathcal{F}_x) = x$ and $h(\mathcal{G}_i) = p_i$. Clearly h is one-toone and onto, and $h \circ \iota_{\mathcal{Z}(E)} = \iota_E$. Since the spaces are compact and T_2 , continuity of h is sufficient to show that h is the homeomorphism required for equivalence. Let F be closed in Y and suppose $\mathcal{F} \notin h^{-1}[F]$. If $\mathcal{F} = \mathcal{F}_x$ for some x, then $h^{-1}[F] \subseteq (X - \{x\})^{\omega}$ and $\mathcal{F} \notin (X - \{x\})^{\omega}$. Now suppose $\mathcal{F} = \mathcal{G}_i$ for some i. Then $p_i \in Y - F$ so that $(X - (Y - F)) \cap C_i$ is finite. Let $Z = (X - (Y - F)) \cup (\cup \{C_j : j \neq i\})$. Then Z is associated with $\{i\}$ so that $Z \in \mathcal{Z}(E), Z \notin \mathcal{G}_i$, and $Z \in \mathcal{G}_j$ for $j \neq i$. Since $X \cap F \subseteq Z$, it follows that $h^{-1}[F] \subseteq Z^{\omega}$ and $\mathcal{G}_i \notin Z^{\omega}$. From the description of the closed sets in $\omega(\mathcal{Z}(E))$ (P3.6 in [7]), $h^{-1}[F]$ is closed and so h is continuous as required.

Note that R5.1.2 and R5.3.8 show that every finite-point compactification of a discrete space can be constructed from a normal basis.

Albert J. Klein 2003

http://www.susanjkleinart.com/compactification/

References

An asterisk indicates a reference not seen by me.

1. Levine, N., On Uniformities Generated by Equivalence Relations, Rend. Circ. Mat. Palermo, Series 2, 18(1969) 62-70.

2. Magill, K.D., N-point Compactifications, Amer. Math. Monthly 72(1965) 1075-1081.

3* Sanderson, D.E., Solution, Amer. Math. Monthly 75(1968) 691.

4. Wilansky, A., Topology for Analysis Ginn and Co., 1970.

5. This website, P1: Ordering and Compactifications

6. This website, P2: Uniform Spaces

7. This website, P3: Normal Bases

8. This website, R1: Existence of Suprema via Uniform Space Theory

Added 2013

This addendum points out that not every finite point compactification class corresponds to a uniformity of the form $\mathcal{U}_m \vee \mathcal{U}_E$.

Lemma R5.Add.1 Let X be a set and let E be an equivalence relation. Then for every $x \in X$, E[x] is $\tau(\mathcal{U}_E)$ -clopen.

Proof: Let x be in X and let $t \in E[x]$. E[t] is a $\tau(\mathcal{U}_E)$ -neighborhood of t and E[t] = E[x] since E-sections are equivalence classes and xEt. Thus E[x] is a $\tau(\mathcal{U}_E)$ -neighborhood of each of its points and so E[x] is open. The complement of E[x] is the union of the other equivalence classes and so open. Thus E[x] is also $\tau(\mathcal{U}_E)$ -closed.

Example R5.Add.2 Let X = (0,1) and \mathcal{U} be the usual uniformity on X. Let Y = [0,1] and let $f: X \to Y$ be the inclusion map. Since \mathcal{U} is the subspace uniformity of the usual uniformity on Y, \mathcal{U} corresponds to the compactification class of (Y, f). Let \mathcal{U}_m be the uniformity for X corresponding to the one-point compactification. Since (Y, f) is a two-point compactification, \mathcal{U}_m is a proper subset of \mathcal{U} . Suppose there is an equivalence relation E on X such that $\mathcal{U}_m \vee \mathcal{U}_E = \mathcal{U}$. Since X is connected and E[x] is clopen in $\tau(\mathcal{U}_E) \subseteq \tau(\mathcal{U}_m \vee \mathcal{U}_E) = \tau(\mathcal{U}), E = X \times X$. But then $\mathcal{U}_m \vee \mathcal{U}_E = \mathcal{U}_m$, a contradiction.

Added 2018

Much of this section focused on finite point compactifications of discrete spaces. This note points out a way to construct non-discrete spaces with finite point compactifications and characterizes spaces whose Stone-Čech compactification is a finite point compactification.

Lemma R5.Add.3 Let (X, τ) be a $T_{3\frac{1}{2}}$ space, let (Y, f) be a T_2 compactification of (X, τ) , and let $S \subseteq Y - f[X]$. Let Z = Y - S have the relative topology from Y. Then (Y, s) is a T_2 compactification of Z, where $s : Z \to Y$ is the inclusion map.

Proof: Since the dense f[X] is contained in Z, Z is dense in Y. Since Z has the relative topology, s is an embedding.

In the last lemma Y - s[Z] = S and so, if S is finite, Z has a finite point compactification.

Lemma R5.Add.4 Let (X, τ) be a $T_{3\frac{1}{2}}$ space, let $(\beta X, \iota)$ be the Stone-Cech compactification of (X, τ) , and let $S \subseteq \beta X - \iota[X]$. Let $Z = \beta X - S$ have the relative topology from βX . Then $(\beta X, s)$ is the Stone-Čech compactification of Z, where $s : Z \to \beta X$ is the inclusion map.

Proof: It is sufficient to show that every continuous map from Z to a compact T_2 space has a continuous extension to βX . Let $h: Z \to K$ be continuous, where K is compact and T_2 . Let g be h restricted to $\iota[X]$. Then g has a continuous extension G to βX . Then $G|_{\iota[X]} = g = h|_{\iota[X]}$. Since $\iota[X]$ is dense in Z and K is T_2 , $G|_Z = h$, i.e., G is a continuous extension of h.

By choosing S finite, one obtains a space whose Stone-Čech compactification is a finite point compactification. The rest of this added note characterizes such spaces.

Lemma R5.Add.5 Let (X, τ) be a $T_{3\frac{1}{2}}$ space, let (Y, f) be a T_2 compactification of (X, τ) , let A be a dense subset of X, and let τ_A be the relative topology on A from X. Then $(Y, f|_A)$ is a T_2 compactification of (A, τ_A) .

Proof: Since f is an embedding and A has the relative topology, $f|_A$ is also an embedding. Clearly its image is f[A]. Since A is dense in X, f[A] is dense in f[X], which is dense in Y. Thus f[A] is dense in Y.

Lemma R5.Add.6 Let (X, τ) be a $T_{3\frac{1}{2}}$ space, let (Y, f) and (Z, g) be a T_2 compactifications of (X, τ) , and let A be a dense subset of X. If $(Y, f|_A)$ is equivalent to $(Z, g|_A)$, then (Y, f) is equivalent to (Z, g).

Proof: Assume $\phi : Y \to Z$ is a homeomorphism with $\phi \circ f|_A = (\phi \circ f)|_A = g|_A$. Since these are continuous maps into the T_2 space Z which agree on a dense subset of the domain, $\phi \circ f = g$. By definition (Y, f) is equivalent to (Z, g).

Proposition R5.Add.7 Let (X, τ) be a non-compact $T_{3\frac{1}{2}}$ space which has exactly M distinct compactification classes, where M is a positive integer. Then its Stone-Čech compactification, $(\beta X, \iota)$, is a finite point compactification with $|\beta X - \iota[X]| \leq M$.

Proof: Assume $|\beta X - \iota[X]| \ge M+1$. Let $Y = \beta X - \{t_1, \ldots, t_{M+1}\}$, where t_1, \ldots, t_{M+1} are distinct elements of $\beta X - \iota[X]$. By R5.Add.3 βX with the inclusion map is a compactification of Y with $|\beta X - Y| = M + 1$. For each $1 \le k \le M + 1$, by R5.1.3, there is a k-point compactification (Z_k, f_k) of Y. By R5.1.4, if $k \ne l$, (Z_k, f_k) is not equivalent to (Z_l, f_l) . Since $\iota[X]$ is dense in Y, by R5.Add.6, these M + 1 compactifications of Y induce M + 1 non-equivalent compactifications of $\iota[X]$. But $\iota[X]$, a homeomorph of X, has exactly M distinct compactification classes, a contradiction.

The next few results will yield the other half of the characterization.

Lemma R5.Add.8 Let (X, τ) be a $T_{3\frac{1}{2}}$ space, let (Y, f) and (Z, g) be a T_2 compactifications of (X, τ) , and let $\phi : Y \to Z$ be continuous and onto with $\phi \circ f = g$. Then, for every $x \in X$, $\phi^{-1}[\{g(x)\}] = \{f(x)\}$. Proof: Fix $x \in X$. Since $\phi(f(x)) = g(x)$, $f(x) \in \phi^{-1}[\{g(x)\}]$. Let $y \in \phi^{-1}[\{g(x)\}]$. There is a net $S : D \to X$ such that $f \circ S$ converges to y. By continuity, $\phi \circ (f \circ S)$ converges to $\phi(y) = g(x)$. Thus $(\phi \circ f) \circ S = g \circ S$ converges to g(x). Since $g : X \to g[X]$ is a homeomorphism, S converges to x and so $f \circ S$ converges to f(x). Since limits are unique in a T_2 space, y = f(x).

The relation $[(Z,g)] \leq [(Y,f)]$ is defined by the existence of ϕ as in the previous lemma, and such a ϕ must be unique. $\mathcal{P}(Z)$ will denote the partition of Y induced by ϕ , i.e., $\{\phi^{-1}[\{z\}]: z \in Z\}$.

Next recall some general facts: If A is compact, B is T_2 , and $m : A \to B$ is continuous and onto, then m is a quotient map and so B is homeomorphic to the quotient space A/E, where E is the equivalence relation determined by the partition $\{m^{-1}[\{b\}]: b \in B\}$. The map $b \mapsto m^{-1}[\{b\}]$ is a homeomorphism.

Lemma R5.Add.9 Let (X, τ) be a $T_{3\frac{1}{2}}$ space and let (Y, f), (W, h) and (Z, g) be T_2 compactifications of (X, τ) with $[(Z, g)] \leq [(Y, f)]$ and $[(W, h)] \leq [(Y, f)]$. Assume $\mathcal{P}(Z) = \mathcal{P}(W)$. Then (Z, g) is equivalent to (W, h).

Proof: Let $\phi : Y \to Z$ and $\psi : Y \to W$ be continuous and onto with $\phi \circ f = g$ and $\psi \circ f = h$. Since $\mathcal{P}(Z) = \mathcal{P}(W)$, Z and W are homeomorphic to the same quotient space, Y/E, where E is the equivalence relation determined by $\mathcal{P}(Z) = \mathcal{P}(W)$. Let $\rho :$ $Z \to Y/E$ and $\sigma : W \to Y/E$ be the homeomorphisms given by $\rho(z) = \phi^{-1}[\{z\}]$ and $\sigma(w) = \psi^{-1}[\{w\}]$. Then $\sigma^{-1} \circ \rho$ is a homeomorphism from Z onto W. It is sufficient to show $(\sigma^{-1} \circ \rho) \circ g = h$. Let $x \in X$. Then $\rho \circ g(x) = \phi^{-1}[\{g(x)\}] = \{f(x)\}$ by R5.Add.8. By the same lemma, $\psi^{-1}[\{h(x)\}] = \{f(x)\}$ so that $\sigma^{-1}(\{f(x)\}) = h(x)$. Thus the claim holds.

Proposition R5.Add.10 Let (X, τ) be a non-compact $T_{3\frac{1}{2}}$ space and let $(\beta X, \iota)$ be the Stone-Čech compactification of (X, τ) . Then βX is a finite point compactification of X if and only if the number of distinct compactification classes of (X, τ) is finite.

Proof: The sufficiency of the condition follows from R5.Add.7. For necessity, assume βX is a finite point compactification of X. For any (Y, f), a compactification of (X, τ) , since $[(Y, F)] \leq [(\beta X, \iota)], Y$ is homeomorphic to a quotient space $\beta X/E$. By R5.Add.8 the partition determining E is the union of $\{\{\iota(x)\} : x \in X\}$ and a partition of $\beta X - \iota[X]$. Since $\beta X - \iota[X]$ is finite, it has finitely many partitions. By R5.Add.9 the number of distinct compactification classes of (X, τ) is finite.