
Finite-Point Compactifications

Let (X, τ ) be a T3 1

2

space. A T2 compactification of X, say (Y, f), is a finite-point

compactification provided |Y − f [X]| is finite. If such a compactification exists, clearly
f [X] would be open in Y , a fact which is equivalent to the local compactness of X. (See,
for example, Wilansky [4].) Consequently, unless explicitly stated otherwise, (X, τ ) is also
assumed to be locally compact throughout this section. Notation and facts from [5] will
be used freely. Only T2 compactifications are considered.

General Topological Facts

In addition to the one-point compactification, which is described in most introductory
topology books, arbitrary finite-point compactifications have been studied by Magill [2].
(Also see [3].) The general result, which assumes only a T2 space, is as follows.

Theorem R5.1.1[Magill] Let (X, τ ) be a Hausdorff space.
The following are equivalent:

i) X has an n-point compactification for some natural number n.
ii) X is locally compact and contains a compact subset K whose complement is
the union of n pairwise disjoint open sets {Gi : i = 1, . . . , n} such that K ∪Gi is
not compact for each i.

Outline of proof: To see that i) implies ii), let (Z, g) be a T2 compactification of X with
Z−g[X] = {z1, . . . , zn}. Pick pairwise disjoint open subsets of Z, O1, . . . , On, with zi ∈ Oi.
Then ii) can be verified for Gi = g−1[Oi] and K = g−1[Z −∪n

i=1Oi]. The fact that zi is in
the Z-closure of g[X]∩Oi leads quickly to the non-compactness ofK∪Gi. For the converse,
let p1, . . . , pn be n distinct objects not in X, let Y = X ∪ {p1, . . . , pn}, and let f : X → Y
by f(x) = x. Let σ = {O ⊆ Y : O∩X is open in X and pi ∈ O ⇒ (X−O)∩Gi has compact
closure in X}. Then σ is a topology for Y and (Y, f) is an n-point compactification of X.

As in [2] a pairwise disjoint family {Gi : i = 1, . . . , n} of open sets whose union has a
compact complement K such that K∪Gi is not compact for each i will be called an n-star
of X. Given an n-star of X, the T2 compactification constructed in the proof above will be
called the n-point compactification determined by the n-star. The next proposition shows
that such compactifications provide representatives of every finite-point compactification
class.

Proposition R5.1.2 Let (Z, g) be an n-point compactification of X. Then there is
an n-star for X such that the n-point compactification of X determined by this n-star is
equivalent to (Z, g).

Outline of proof: As in the proof of R5.1.1, let Z − g[X] = {z1, . . . , zn} and pick
pairwise disjoint open subsets of Z, O1, . . . , On, with zi ∈ Oi. Then {Gi = g−1[Oi] : i =
1, . . . , n} is an n-star for X. Let (Y, f) be the n-point compactification determined by this
n-star. Define h : Z → Y by h(g(x)) = f(x) = x on g[X] and h(zi) = pi for i = 1, . . . , n.
Then h ◦ g = f by definition and h is easily seen to be a bijection. For continuity, let O be
open in Y and let z ∈ h−1[O]. If z = g(x) for some x, then z ∈ g[f−1[O ∩X]], which is an
open subset of h−1[O]. If z = zi, then pi ∈ O so that cX(Gi ∩ (X −O)) is compact. Then
zi ∈ Oi − g[cX(Gi ∩ (X − O))], which is an open subset of h−1[O]. Thus h is continuous
and, since Z is compact and Y is T2, a homeomorphism.
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Corollary R5.1.3 Let (Z, g) be an n-point compactification of X. For each natural
number m with m ≤ n, X has an m-point compactification.

Proof: Let {Gi : i = 1, . . . , n} be an n-star determined by (Z, g). Let G∗

m = ∪n
i=mGi.

Then {G1, . . . , Gm−1, G
∗

m} is an m-star, which determines an m-point compactification of
X.

Proposition R5.1.4 Let (Z1, g1) be an n-point compactification ofX, and let (Z2, g2)
be an m-point compactification of X. If (Z1, g1) is equivalent to (Z2, g2), then n = m.

Proof: Let h : Z1 → Z2 be the homeomorphism with h ◦ g1 = g2. That equation
implies that h induces a bijection between the finite sets Z1 − g1[X] and Z2 − g2[X]. Thus
n = m.

Theorem R5.1.5 [Magill] Let {Gi : i = 1, . . . , n} and {Oi : i = 1, . . . , n} be n-stars
for the space X. Let K1 = X − ∪{Gi : i = 1, . . . , n}, and let (Y1, f1) and (Y2, f2) be the
n-point compactifications determined by the n-stars. Then (Y1, f1) is equivalent to (Y2, f2)
if and only if there exists a permutation σ of {1, . . . , n} such that (K1 ∪Gi)∩ (X −Oσ(i))
is compact for each i.

Outline of proof: Let Y1 = X ∪{p1, . . . , pn} and Y2 = X∪{q1, . . . , qn} with topologies
and embeddings as described above. First assume the two compactifications are equivalent,
so that there is a homeomorphism h : Y1 → Y2 with h◦f1 = f2, i.e., h|X is the identity map.
h induces a permutation σ, where σ(i) = j when h(pi) = qj . Fix i. Since {qσ(i)} ∪Oσ(i) is
open in Y2, its inverse image under h, {pi} ∪Oσ(i), is open in Y1, so that (X −Oσ(i))∩Gi

has compact closure in X. It follows easily that the X-closed set (K1 ∪Gi)∩ (X−Oσ(i)) is
contained in a compact set and so is compact itself. For the converse, define h : Y1 → Y2

by h(x) = x for x ∈ X and h(pi) = qσ(i). For O open in Y2, h
−1[O]∩X = O ∩X, which is

open in X. If pi ∈ h−1[O], then (X −O) ∩Gi is contained in [(K1 ∪Gi) ∩ (X −Oσ(i))] ∪
[(X − O) ∩ Oσ(i)] and so has compact closure. Thus h is continuous. Clearly h is the
homeomorphism required to show that the two compactifications are equivalent.

Let lR denote the reals, Cl the complex plane, and lRm m-dimensional space, all with
the usual topologies. Magill presents the following examples.

Corollary R5.1.6 Cl and lRm with m ≥ 2 do not have n-point compactifications for
n ≥ 2.

Proof: By R5.1.3 it is sufficient to show the non-existence of 2-point compactifications.
Deny and let {G1, G2} be a 2-star. Let B be a ball containing the complement of G1∪G2.
For these spaces, the complement of B must be connected but {G1, G2} would induce a
separation. Contradiction.

Corollary R5.1.7 lR has a 2-point compactification but does not have an n-point
compactification for n ≥ 3.

Proof: {(−∞, 0), (0,∞)} is a 2-star for lR . Now suppose {G1, G2, G3} is a 3-star
for lR , and let lR−(G1 ∪ G2 ∪ G3) be contained in [a, b]. Since (−∞, a) and (b,∞) are
connected, each has non-empty intersection with at most one Gi. The leftover Gi would
have to be contained in [a, b], which leads to a contradiction.

Corollary R5.1.8 All 2-point compactifications of lR are equivalent.

Proof: Let {G1, G2} and {O1, O2} be 2-stars of lR , let K1 = lR−(G1 ∪ G2), and
suppose K1 ⊆ [a, b]. Since (−∞, a) and (b,∞) are both connected, each must be entirely
contained in one Gi and one Oi. Use that fact to define σ. Without loss of generality,
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assume (−∞, a) is a subset of G1 and Oσ(1), while (b,∞) is contained in G2 and Oσ(2).
Then, for i ∈ {1, 2}, the closed set (K1 ∪Gi)∩ (lR−Oσ(i)) is contained in [a, b], and so the
compactifications are equivalent by R5.1.5.

For what follows certain equivalence relations closely related to n-stars will be used.
As is clear from the following definition, each n-compatible equivalence relation on X
determines one n-star, while an n-star determines at least one n-compatible equivalence
relation.

Definition R5.1.9 Let (X, τ ) be a T2 space. An equivalence relation E on X is
n-compatible provided E has finitely many distinct equivalence classes, exactly n of which
form an n-star of X.

If E is an n-compatible equivalence relation on X, (Y, ιE) will denote the n-point
compactification determined as above by the associated n-star, and τ (E) will denote the
topology for Y . The following facts show that these notions simplify in the discrete case.

Proposition R5.1.10 Let X be an infinite discrete space and let E be an equiva-
lence relation on X. Then E is n-compatible if and only if E has finitely many distinct
equivalence classes, exactly n of which are infinite.

Proof: This follows easily because distinct equivalence classes must be disjoint and
compactness is equivalent to finiteness in a discrete space.

Proposition R5.1.11 Let X be an infinite discrete space and E an n-compatible
equivalence relation on X. Let {e1, . . . , en} be the distinct infinite equivalence classes of
E. Then τ (E) = {O ⊆ Y : pi ∈ O ⇒ (X −O) ∩ ei is finite }.

Proof: This follows easiliy since every X ∩ O is open and having compact closure in
X is equivalent to finiteness.

Proposition R5.1.12 Let X be an infinite discrete space and let D and E be n-
compatible equivalence relations on X. Let {d1, . . . , dn} and {e1, . . . , en} be the distinct
infinite equivalence classes of D and E respectively. Then (Y, ιD) and (Y, ιE) are equivalent
compactifications if and only if there is a permutation σ of {1, . . . , n} with the property
that di ∩ (X − eσ(i)) is finite for each i.

Proof: This merely restates R5.1.5 in the present context.
Magill uses infinite discrete spaces as examples which have infinitely many non-

equivalent n-compactifications for n ≥ 2. Such examples are implicit in R5.1.12. It also
provides simple examples of non-equivalent compactifications which are homeomorphic.
With X discrete, it can be shown that, in the notation of R5.1.12, (Y, τ (D)) and (Y, τ (E))
are homeomorphic if |X| = ℵ0 or if a σ exists such that |di| = |eσ(i)| for each i.

Uniform Space Constructions

Basic facts and notation for uniform spaces, which will be used in this subsection, can
be found in [6].

Definition R5.2.1 [1] Let E be an equivalence relation on set X. UE denotes
{U : X ×X ⊇ U ⊇ E}.

Lemma R5.2.2 [1] Let E be an equivalence relation on X. Then UE is a uniformity
for X, and UE is totally bounded if and only if E has finitely many distinct equivalence
classes.

Proof: The key to the first assertion is that E ◦E = E; the second follows easily since
total boundedness is, in this case, equivalent to the equation X =

⋃n

i=1 E[xi] for some
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finite set x1 . . . xn.
Recall the following notation from [8]: For (X, τ ) a non-compact locally compact

Hausdorff space, Um denotes {U : U ⊇
⋃n

i=1Oi ×Oi where O1, . . . , On are an open cover
of X and at least one Oi has a compact complement}. It is shown in [8] that Um is a
totally bounded uniformity with τ (Um) = τ and that a separated completion of (X,Um)
determines the compactification class of the one-point compactification for X, i.e., in the
notation of [8], Ψ0(Um) = [(X+, ι+)]. Also recall that T B(X) denotes the set of totally
bounded uniformities on X that generate τ .

Proposition R5.2.3 Let (X, τ ) be a non-compact, locally compact T2 space. Let E
be an n-compatible equivalence relation on X with each E equivalence class open in τ .
Then Um ∨ UE ∈ T B(X) and Ψ0(Um ∨ UE) = [(Y, ιE)].

Proof: By P2.13 Um∨UE is totally bounded and and by P2.14 τ (Um∨UE) = τ∨τ (UE).
Since E[x] ∈ τ for all x, τ (UE) ⊆ τ and so Um ∨ UE ∈ T B(X).

Now let O1, . . . , On denote the equivalence classes of E which form the n-star, and let
V ∈ T B(X) be such that Ψ0(V) = [(Y, ιE)]. Note that V is simply the subspace uniformity
on X induced from the unique uniformity for Y , i.e., the collection of all neighborhoods
of the diagonal in Y × Y . (See P2.4 in [6].) One such neighborhood is N =

⋃n+j

i=1 Gi ×Gi

where Gi = Oi ∪ {pi} for i = 1, . . . , n and Gn+1, . . . , Gn+j are the remaining equivalence
classes of E. Clearly N ∩ (X × X) = E and so UE ⊆ V . Since [(X+, ι+)] ≤ [Y, ιE)], by
R1.5 Um ⊆ V . Thus Um ∨ UE ⊆ V .

To verify the reverse containment, let V ∈ V , and let M be a neighborhood of the
diagonal in Y such that V = (X × X) ∩M . For each x ∈ X, there exists Ox ∈ τ with
Ox × Ox ⊆ M . Also there exist H1, . . . ,Hn open in Y with pi ∈ Hi and Hi × Hi ⊆ M .
For S = ∪n

i=1Oi, the complement is compact and so there is a finite set ∆0 such that
X − S ⊆ ∪{Ox : x ∈ ∆0}. Let U0 = (∪{Ox ×Ox : x ∈ ∆0}) ∪ (S × S). Clearly U0 ∈ Um.
Since pi ∈ Hi and each Oi is clopen, Ti = (X−Hi)∩Oi is compact, and so there is ∆i such
that Ti ⊆ ∪{Ox × Ox : x ∈ ∆i}. Let Ui = (∪{Ox ×Ox : x ∈ ∆i}) ∪ (X − Ti) × (X − Ti).
Then U1, . . . , Un are also in Um. To finish it is sufficient to show that ([∩n

i=0Ui] ∩E) ⊆ V .
Let (x, y) be in the intersection with x 6= y. If (x, y) is in ∪{Ox ×Ox : x ∈ ∆i} for any i,
clearly (x, y) is in V . Thus assume (x, y) is in S × S and (X − Ti) × (X − Ti) for every i.
Since (x, y) is in both E and S×S, x, y ∈ Oj for some j. Then x, y /∈ Tj implies x, y ∈ Hj .
Thus (x, y) ∈ Hj ×Hj , which yields (x, y) ∈ V .

Proposition R5.2.4 Let X be an infinite discrete space. Let E be an n-compatible
equivalence relation on X. Then Um ∨ UE ∈ T B(X) and Ψ0(Um ∨ UE) = [(Y, ιE)].

Proof: In the discrete case the assumption that every E-equivalence class is open is
automatically satisfied. This is a special case of R5.2.3.

Note that for two n-compatible equivalence relations on a discreteX, E and F , R5.1.12
and R1.5 can be combined to characterize Um ∨ UE = Um ∨ UF . It can also be shown that
(X,Um ∨ UE) and (X,Um ∨ UF ) are unimorphic if there ia a one-to-one correspondence
between the infinite equivalence classes of E and F such that corresponding classes have
the same cardinality. This leads to examples of unimorphic spaces which determine non-
equivalent compactifications.

Normal Basis Constructions for Discrete Spaces

Basic facts and notation used here can be found in [7]. Throughout this subsection
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X will denote an infinite discrete space and E an n-compatible equivalence relation on X
with distinct infinite equivalence classes C1, . . . , Cn.

Definition R5.3.1 Let S ⊆ X and let ∆ ⊆ {1, . . . , n}. S is associated with ∆ if and
only if S ∩ Ci is finite for all i ∈ ∆ and (X − S) ∩ Ci is finite for all i /∈ ∆.

Definition R5.3.2

Z(E) = {S ⊆ X : S is associated with ∆ for some ∆ ⊆ {1, . . . , n}}.

Proposition R5.3.3 Z(E) is a normal basis for X.

Proof: Note that finite subsets of X are associated with {1, . . . , n} and so are in Z(E).
Also, if Z ∈ Z(E) is associated with ∆, then X −Z is associated with {1, . . . , n}−∆ and
thus is also in Z(E). Since x /∈ S means S ⊆ X − {x}, Z(E) is a base for the closed
sets. For Z1, Z2 ∈ Z(E) associated with ∆1,∆2 respectively, Z1 ∪ Z2 is associated with
∆1 ∩∆2 and Z1 ∩Z2 is associated with ∆1 ∪∆2. Thus Z(E) is closed under finite unions
and intersections. The third requirement of definition P3.1 is satisfied because, for x /∈ S,
{x} ∈ Z(E) and S ∩ {x} = ∅. The fourth is equally straightforward: for Z1, Z2 ∈ Z(E)
with Z1 ∩ Z2 = ∅, X − Z1 and X − Z2 are in Z(E) and form the needed cover.

Definition R5.3.4 Let i ∈ {1, . . . , n}.
Gi = {S ∈ Z(E) : S is associated with some ∆ contained in {1, . . . , n} − {i}}.

Lemma R5.3.5 An element of Z(E) is associated with a unique subset of {1, . . . , n}.

Proof: Deny and pick Z in Z(E) associated with both ∆1 and ∆2. For any i in
(∆1 − ∆2) ∪ (∆2 − ∆1), both Z ∩ Ci and (X − Z) ∩ Ci must be finite, which contradicts
the assumption that Ci is infinite.

Proposition R5.3.6 For i ∈ {1, . . . , n}, Gi is a Z(E)-ultrafilter.

Proof: The co-finite subsets of X, being associated with ∅, are in Gi, while ∅ is not
since it is associated with {1, . . . , n}. Let S1, S2 in Z(E) be associated with ∆1 and ∆2

respectively. Since S1 ∩ S2 is associated with ∆1 ∪ ∆2, clearly Gi is closed under finite
intersections. If S1 ∈ Gi and S1 ⊆ S2, then ∆2 ⊆ ∆1 so that S2 ∈ Gi. Thus Gi is a
Z(E)-filter. Now suppose F is a Z(E)-filter with Gi ⊆ F . If Z ∈ F is associated with
∆ and i ∈ ∆, then X − Z, which is associated with {1, . . . , n} − ∆, must be in Gi. That
implies Z ∩ (X − Z) ∈ F , a contradiction. Thus Gi is a Z(E)-ultrafilter.

Proposition R5.3.7 The distinct, non-point ultrafilters in ω(Z(E)) are G1, . . . ,Gn.

Proof: For all i, Ci is associated with {1, . . . , n} − {i} and so Ci ∈ Gi and Gi 6= Gj if
j 6= i. Since all finite sets are associated with {1, . . . , n}, the ultrafilter Gi does not contain
any finite set. Thus G1, . . . ,Gn are distinct, non-point Z(E)-ultrafilters. Now let F be a
Z(E)-ultrafilter with F 6= Gi for all i. Pick Fi associated with ∆i such that Fi ∈ F but
Fi /∈ Gi. Then i ∈ ∆i for each i. Let F = ∩n

i=1Fi. F is in F and is associated with
∪n

i=1∆i = {1, . . . , n}. That means F is finite. Since only point-ultrafilters contain any
finite sets, F must be Fx for some x.

Proposition R5.3.8 (ω(Z(E)), ιZ(E)) is equivalent to (Y, ιE).

Proof: Define h : ω(Z(E)) → Y by h(Fx) = x and h(Gi) = pi. Clearly h is one-to-
one and onto, and h ◦ ιZ(E) = ιE. Since the spaces are compact and T2, continuity of
h is sufficient to show that h is the homeomorphism required for equivalence. Let F be
closed in Y and suppose F /∈ h−1[F ]. If F = Fx for some x, then h−1[F ] ⊆ (X − {x})ω

and F /∈ (X − {x})ω . Now suppose F = Gi for some i. Then pi ∈ Y − F so that
(X− (Y −F ))∩Ci is finite. Let Z = (X − (Y −F ))∪ (∪{Cj : j 6= i}. Then Z is associated
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with {i} so that Z ∈ Z(E), Z /∈ Gi, and Z ∈ Gj for j 6= i. Since X ∩ F ⊆ Z, it follows
that h−1[F ] ⊆ Zω and Gi /∈ Zω. From the description of the closed sets in ω(Z(E)) (P3.6
in [7]), h−1[F ] is closed and so h is continuous as required.

Note that R5.1.2 and R5.3.8 show that every finite-point compactification of a discrete
space can be constructed from a normal basis.

Albert J. Klein 2003
http://www.susanjkleinart.com/compactification/
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Added 2013

This addendum points out that not every finite point compactification class corre-
sponds to a uniformity of the form Um ∨ UE .

Lemma R5.Add.1 Let X be a set and let E be an equivalence relation. Then for
every x ∈ X, E[x] is τ (UE)-clopen.

Proof: Let x be in X and let t ∈ E[x]. E[t] is a τ (UE)-neighborhood of t and
E[t] = E[x] since E-sections are equivalence classes and xEt. Thus E[x] is a τ (UE)-
neighborhood of each of its points and so E[x] is open. The complement of E[x] is the
union of the other equivalence classes and so open. Thus E[x] is also τ (UE)-closed.

Example R5.Add.2 Let X = (0, 1) and U be the usual uniformity on X. Let
Y = [0, 1] and let f : X → Y be the inclusion map. Since U is the subspace uniformity of
the usual uniformity on Y , U corresponds to the compactification class of (Y, f). Let Um

be the uniformity for X corresponding to the one-point compactification. Since (Y, f) is
a two-point compactification, Um is a proper subset of U . Suppose there is an equivalence
relation E on X such that Um ∨ UE = U . Since X is connected and E[x] is clopen in
τ (UE) ⊆ τ (Um ∨ UE) = τ (U), E = X ×X. But then Um ∨ UE = Um, a contradiction.

Added 2018

Much of this section focused on finite point compactifications of discrete spaces. This
note points out a way to construct non-discrete spaces with finite point compactifications
and characterizes spaces whose Stone-Čech compactification is a finite point compactifica-
tion.
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Lemma R5.Add.3 Let (X, τ ) be a T3 1

2

space, let (Y, f) be a T2 compactification of

(X, τ ), and let S ⊆ Y − f [X]. Let Z = Y − S have the relative topology from Y . Then
(Y, s) is a T2 compactification of Z, where s : Z → Y is the inclusion map.

Proof: Since the dense f [X] is contained in Z, Z is dense in Y . Since Z has the
relative topology, s is an embedding.

In the last lemma Y − s[Z] = S and so, if S is finite, Z has a finite point compactifi-
cation.

Lemma R5.Add.4 Let (X, τ ) be a T3 1

2

space, let (βX, ι) be the Stone-Čech com-

pactification of (X, τ ), and let S ⊆ βX − ι[X]. Let Z = βX−S have the relative topology
from βX. Then (βX, s) is the Stone-Čech compactification of Z, where s : Z → βX is the
inclusion map.

Proof: It is sufficient to show that every continuous map from Z to a compact T2 space
has a contiuous extension to βX. Let h : Z → K be continuous, where K is compact and
T2. Let g be h restricted to ι[X]. Then g has a continuous extension G to βX. Then
G|ι[X] = g = h|ι[X]. Since ι[X] is dense in Z and K is T2, G|Z = h, i.e., G is a continuous
extension of h.

By choosing S finite, one obtains a space whose Stone-Čech compactification is a finite
point compactification. The rest of this added note characterizes such spaces.

Lemma R5.Add.5 Let (X, τ ) be a T3 1

2

space, let (Y, f) be a T2 compactification of

(X, τ ), let A be a dense subset of X, and let τA be the relative topology on A from X.
Then (Y, f |A) is a T2 compactification of (A, τA).

Proof: Since f is an embedding and A has the relative topology, f |A is also an
embedding. Clearly its image is f [A]. Since A is dense in X, f [A] is dense in f [X], which
is dense in Y . Thus f [A] is dense in Y .

Lemma R5.Add.6 Let (X, τ ) be a T3 1

2

space, let (Y, f) and (Z, g) be a T2 compact-

ifications of (X, τ ), and let A be a dense subset of X. If (Y, f |A) is equivalent to (Z, g|A),
then (Y, f) is equivalent to (Z, g).

Proof: Assume φ : Y → Z is a homeomorphism with φ ◦ f |A = (φ ◦ f)|A = g|A.
Since these are continuous maps into the T2 space Z which agree on a dense subset of the
domain, φ ◦ f = g. By definition (Y, f) is equivalent to (Z, g).

Proposition R5.Add.7 Let (X, τ ) be a non-compact T3 1

2

space which has exactly

M distinct compactification classes, where M is a positive integer. Then its Stone-Čech
compactification, (βX, ι), is a finite point compactification with |βX − ι[X]| ≤M .

Proof: Assume |βX−ι[X]| ≥M+1. Let Y = βX−{t1, . . . , tM+1}, where t1, . . . , tM+1

are distinct elements of βX − ι[X]. By R5.Add.3 βX with the inclusion map is a com-
pactification of Y with |βX − Y | = M + 1. For each 1 ≤ k ≤ M + 1, by R5.1.3, there
is a k-point compactification (Zk, fk) of Y . By R5.1.4, if k 6= l, (Zk, fk) is not equivalent
to (Zl, fl). Since ι[X] is dense in Y , by R5.Add.6, these M + 1 compactifications of Y
induce M + 1 non-equivalent compactifications of ι[X]. But ι[X], a homeomorph of X,
has exactly M distinct compactification classes, a contradiction.

The next few results will yield the other half of the characterization.
Lemma R5.Add.8 Let (X, τ ) be a T3 1

2

space, let (Y, f) and (Z, g) be a T2 compact-

ifications of (X, τ ), and let φ : Y → Z be continuous and onto with φ ◦ f = g. Then, for
every x ∈ X, φ−1[{g(x)}] = {f(x)}.

7



Proof: Fix x ∈ X. Since φ(f(x)) = g(x), f(x) ∈ φ−1[{g(x)}]. Let y ∈ φ−1[{g(x)}].
There is a net S : D → X such that f ◦ S converges to y. By continuity, φ ◦ (f ◦ S)
converges to φ(y) = g(x). Thus (φ ◦ f) ◦ S = g ◦ S converges to g(x). Since g : X → g[X]
is a homeomorphism, S converges to x and so f ◦ S converges to f(x). Since limits are
unique in a T2 space, y = f(x).

The relation [(Z, g)] ≤ [(Y, f)] is defined by the existence of φ as in the previous
lemma, and such a φ must be unique. P(Z) will denote the partition of Y induced by φ,
i.e., {φ−1[{z}] : z ∈ Z}.

Next recall some general facts: If A is compact, B is T2, and m : A→ B is continuous
and onto, then m is a quotient map and so B is homeomorphic to the quotient space A/E,
where E is the equivalence relation determined by the partition {m−1[{b}] : b ∈ B}. The
map b 7→ m−1[{b}] is a homeomorphism.

Lemma R5.Add.9 Let (X, τ ) be a T3 1

2

space and let (Y, f), (W,h) and (Z, g) be

T2 compactifications of (X, τ ) with [(Z, g)] ≤ [(Y, f)] and [(W,h)] ≤ [(Y, f)]. Assume
P(Z) = P(W ). Then (Z, g) is equivalent to (W,h).

Proof: Let φ : Y → Z and ψ : Y → W be continuous and onto with φ ◦ f = g
and ψ ◦ f = h. Since P(Z) = P(W ), Z and W are homeomorphic to the same quotient
space, Y/E, where E is the equivalence relation determined by P(Z) = P(W ). Let ρ :
Z → Y/E and σ : W → Y/E be the homeomorphisms given by ρ(z) = φ−1[{z}] and
σ(w) = ψ−1[{w}]. Then σ−1 ◦ ρ is a homeomorphism from Z onto W . It is sufficient to
show (σ−1 ◦ ρ) ◦ g = h. Let x ∈ X. Then ρ ◦ g(x) = φ−1[{g(x)}] = {f(x)} by R5.Add.8.
By the same lemma, ψ−1[{h(x)}] = {f(x)} so that σ−1({f(x)}) = h(x). Thus the claim
holds.

Proposition R5.Add.10 Let (X, τ ) be a non-compact T3 1

2

space and let (βX, ι) be

the Stone-Čech compactification of (X, τ ). Then βX is a finite point compactification of
X if and only if the number of distinct compactification classes of (X, τ ) is finite.

Proof: The sufficiency of the condition follows from R5.Add.7. For necessity, assume
βX is a finite point compactification of X. For any (Y, f), a compactification of (X, τ ),
since [(Y, F )] ≤ [(βX, ι)], Y is homeomorphic to a quotient space βX/E. By R5.Add.8 the
partition determining E is the union of {{ι(x)} : x ∈ X} and a partition of βX − ι[X].
Since βX − ι[X] is finite, it has finitely many partitions. By R5.Add.9 the number of
distinct compactification classes of (X, τ ) is finite.

Added 2024

Given (Y, f), a T2 compactification of a T3 1

2

space (X, τ ), the compact T2 space Y will
be called the target space of the compactification. In what follows, an example of two non-
equivalent finite-point compactifications with homeomorphic target spaces is presented.
The target space of the supremum is not homeomorphic to either. Finally, it is shown that
all 2-point compactifications of a countably infinite discrete space have homeomorphic
target spaces.

Lemma R5.Add.11 Let (X, τ ) be a discrete topological space with X infinite. Let
A be an infinite subset of X with an infinite complement. Then {A,X −A} is a 2-star for
X.

Proof: By hypothesis {A,X − A} is a disjoint pair of non-compact open sets. The
complement of their union is ∅, which is compact. By definition {A,X − A} is a 2-star.
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Lemma R5.Add.12 Let (X, τ ) be a discrete topological space with X countably
infinite. Let A,B be infinite subsets of X with both having infinite complements. Then
the 2-point compactifications generated by the 2-stars {A,X − A} and {B,X − B} have
homeomorphic target spaces.

Proof: Representations of the compactifications as in R5.1.1 will be used:
Y = X∪{a1, a2} and Z = X∪{b1, b2}, where a1 6= a2, b1 6= b2, and X∩{a1, a2, b1, b2} = ∅.
The topology for Y is α, where O ⊆ Y is in α if and only if a1 ∈ O implies (X −O) ∩ A
is finite and a2 ∈ O implies (X −O) ∩ (X − A) is finite. The topology for Z is β, where
G ⊆ Y is in β if and only if b1 ∈ G implies (X − G) ∩ B is finite and b2 ∈ G implies
(X − G) ∩ (X − B) is finite. The embeddings are the inclusion maps, f : X → Y and
g : X → Z. By hypothesis A, B and their complements are all countably infinite and
so there is σ, a permutation of X, such that σ[A] = B. Define h : Y → Z by h|X = σ,
h(a1) = b1, and h(a2) = b2. Clearly, h is one-to-one and onto. Now let G ∈ β. It is
easy to check that X − h−1[G] = h−1[X − G]. Suppose a1 ∈ h−1[G]. Then b1 ∈ G
and so (X − G) ∩ B is finite. Then (X − h−1[G]) ∩ A = h−1[X − G] ∩ h−1[B], which is
h−1[(X − G) ∩ B] and finite, since h is one-to-one. Next suppose a2 ∈ h−1[G] so that
b2 ∈ G. Since X − A = X − h−1[B] = h−1[X − B], a similar argument shows that
(X − h−1[G]) ∩ (X − A) is finite. By definition h−1[G] ∈ α so that h is continuous. Since
Y is compact and Z is T2, h is a homeomorphism.

Example R5.Add.13 Let X =lN have the discrete topology, let A be the even
positive integers, and let B be the multiples of 3. Let (Y, f) and (Z, g) be the 2-point
compactifications determined as in the previous proof by the 2-stars {A,X − A} and
{B,X −B} respectively. Since A∩B and A ∩ (X −B) are both infinite, by R5.1.5 (Y, f)
and (Z, g) are not equivalent. By the previous lemma the target spaces, Y and Z, are
homeomorphic.

Example R5.Add.14 Continue withX, (Y, f), and (Z, g) as in the previous example.
Let W be the closure in Y × Z of {(x, x) : x ∈ X} and let w : X → W by w(x) = (x, x).
By R3.1.1 and R3.1.2 (W,w) is a T2 compactification of X and represents the supremum
class for (Y, f) and (Z, g). Let S = {(x, x) : x ∈ X} ∪ ({a1, a2} × {b1, b2}. It is claimed
that W = S. First, (Y × Z) − S is open in Y × Z: Let (p, q) ∈ (Y × Z) − S. If p, q ∈ X,
{(p, q)} is open in Y × Z. If p ∈ X and q ∈ {b1, b2}, (p, q) is in one of the Y × Z-open
sets {p} × ((B − {p}) ∪ {b1}) and {p} × (((X − B) − {p}) ∪ {b2}), both of which are
contained in (Y × Z) − S. If p ∈ {a1, a2} and q ∈ X, proceed similarly by using the
Y -open sets (A − {q}) ∪ {a1} and ((X − A) − {q}) ∪ {a2}. Thus (Y × Z) − S is open,
S is closed, and W ⊆ S. Next it will be shown that {a1, a2} × {b1, b2} ⊆ W . There
are four cases. First, (a2, b1) will be shown to be in W . Let (a2, b1) ∈ O × G, where
O ∈ α and G ∈ β. By definition of the topologies (X − O) ∩ (X − A) and (X − G) ∩ B
are both finite. By the choice of A and B, (X − A) ∩ B is infinite and there is t in
(X − A) ∩ B with t /∈ ((X − O) ∩ (X − A)) ∪ ((X − G) ∩ B). Then t is in both O and
G, i.e., (t, t) ∈ {(x, x) : x ∈ X} ∩ (O × G). Thus (a2, b1) ∈ W . The other three cases
are done in a similar way by using the appropriate choice from the infinite sets A ∩ B,
A∩(X−B), and (X−A)∩(X −B). It follows that W = S. Finally, suppose W and Y are
homeomorphic, and let H : W → Y be a homeomorphism. For any t in X, {(t, t)} is open
in W . Since the singletons {a1} and {a2} are not open in Y , H((t, t)) must be in X. Also,
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no singletons from {a1, a2} × {b1, b2} are open and so H−1(t) must be in {(x, x) : x ∈ X}
for all t ∈ X. Thus H[{(x, x) : x ∈ X}] = X and so H[{a1, a2} × {b1, b2}] = {a1, a2},
which contradicts the assumption that H is one-to-one. No such H exists, i.e., W and Y
are not homeomorphic.

Lemma R5.Add.15 Let (X, τ ) be a discrete topological space with X countably
infinite and let (Y, f) be a 2-point compactification of X. Then X has an infinite subset
A with X − A also infinite such that (Y, f) is equivalent to the 2-point compactification
generated by the 2-star {A,X − A}.

Proof: By R5.1.2 there is a 2-star {G1, G2} for X such that the 2-point compact-
ification generated by {G1, G2} is equivalent to (Y, f). Let K = X − (G1 ∪ G2). By
definition of a 2-star, K must be finite and both K ∪ G1 and K ∪ G2 are both infinite.
Let A = K ∪ G1. Since G2 ∩ G1 = ∅ = G2 ∩ K, X − A = G2. Since K is finite and
K ∪G2 is infinite, X −A is infinite. R5.1.5 will be applied with O1 = A and O2 = X −A.
Let σ be the identity permutation of {1, 2}. (K ∪ G1) ∩ (X − O1) = A ∩ (X − A) = ∅,
which is finite. In addition, (K ∪ G2) ∩ (X − O2) = (K ∪ G2) ∩ A = K, which is finite.
By R5.1.5 the 2-point compactification generated by {G1, G2} is equivalent to the 2-point
compactification generated by {A,X −A}, and so the conclusion holds.

Corollary R5.Add.16 All 2-point compactifications of a countably infinite discrete
space have homeomorphic target spaces.

Proof: Let X be a countably infinite discrete space, and let (Y, f) and (Z, g) be
2-point compactifications of X. By R5.Add.15 there exist A and B, infinite subsets of
X, with both X − A, X − B also infinite such that (Y, f) is equivalent to the 2-point
compactification generated by the 2-star {A,X − A} and (Z, g) is equivalent to to the
2-point compactification generated by the 2-star {B,X−B}. Since equivalent spaces have
homeomorphic target spaces and homeomorphism is transitive, it follows from R5.Add.12
that Y is homeomorphic to Z.

Added Reference

9. This website, R3: Representation of Suprema
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