Finite-Point Compactifications

Let (X,7) be a T3% space. A T, compactification of X, say (Y, f), is a finite-point
compactification provided |Y — f[X]| is finite. If such a compactification exists, clearly
f[X] would be open in Y, a fact which is equivalent to the local compactness of X. (See,
for example, Wilansky [4].) Consequently, unless explicitly stated otherwise, (X, 7) is also
assumed to be locally compact throughout this section. Notation and facts from [5] will
be used freely. Only T, compactifications are considered.

General Topological Facts

In addition to the one-point compactification, which is described in most introductory
topology books, arbitrary finite-point compactifications have been studied by Magill [2].
(Also see [3].) The general result, which assumes only a T space, is as follows.

Theorem R5.1.1[Magill] Let (X, 7) be a Hausdorff space.

The following are equivalent:
i) X has an n-point compactification for some natural number n.
ii) X is locally compact and contains a compact subset K whose complement is
the union of n pairwise disjoint open sets {G; : i = 1,...,n} such that K UG is
not compact for each 1.

Outline of proof: To see that i) implies ii), let (Z, g) be a T» compactification of X with
Z—g|X]=A{z1,...,2n}. Pick pairwise disjoint open subsets of Z, O, ..., O,, with z; € O;.
Then ii) can be verified for G; = ¢71[0;] and K = g~ }[Z — U"_,0;]. The fact that z; is in
the Z-closure of g[X]|NO; leads quickly to the non-compactness of KUG;. For the converse,
let p1,...,p, be n distinct objects not in X, let Y = X U{p1,...,pn},and let f: X — Y
by f(z) =z. Let 6 ={O CY : ONX isopen in X and p; € O = (X —0)NG; has compact
closure in X }. Then o is a topology for Y and (Y, f) is an n-point compactification of X.

As in [2] a pairwise disjoint family {G; : i = 1,...,n} of open sets whose union has a
compact complement K such that K UG; is not compact for each ¢ will be called an n-star
of X. Given an n-star of X, the T, compactification constructed in the proof above will be
called the n-point compactification determined by the n-star. The next proposition shows
that such compactifications provide representatives of every finite-point compactification
class.

Proposition R5.1.2 Let (Z, g) be an n-point compactification of X. Then there is
an n-star for X such that the n-point compactification of X determined by this n-star is
equivalent to (7, g).

Outline of proof: As in the proof of R5.1.1, let Z — ¢g[X] = {z1,...,2,} and pick
pairwise disjoint open subsets of Z, O1,...,0,, with z; € O;. Then {G; = ¢ [0;] : i =
1,...,n} is an n-star for X. Let (Y, f) be the n-point compactification determined by this
n-star. Define h: Z — Y by h(g(z)) = f(z) = x on ¢g[X] and h(z;) =p; for i =1,...,n.
Then hog = f by definition and h is easily seen to be a bijection. For continuity, let O be
open in Y and let z € h=YO]. If z = g(z) for some z, then z € g[f [0 N X]], which is an
open subset of h™1[0]. If 2z = z;, then p; € O so that cx(G; N (X — O)) is compact. Then
zi € 0; — glex(G; N (X — 0))], which is an open subset of h=[O]. Thus h is continuous
and, since Z is compact and Y is T3, a homeomorphism.
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Corollary R5.1.3 Let (7, g) be an n-point compactification of X. For each natural
number m with m < n, X has an m-point compactification.

Proof: Let {G; :i=1,...,n} be an n-star determined by (Z,g). Let G}, = U, G;.
Then {G1,...,Gn-1,G},} is an m-star, which determines an m-point compactification of
X.

Proposition R5.1.4 Let (Z1, g1) be an n-point compactification of X, and let (Z3, g2)
be an m-point compactification of X. If (Z1, g1) is equivalent to (Z2, g2), then n = m.

Proof: Let h : Z1 — Z5 be the homeomorphism with h o g3 = g2. That equation
implies that A induces a bijection between the finite sets Z; — ¢1[X] and Zs — g2[X]. Thus
n=m.

Theorem R5.1.5 [Magill] Let {G; :i=1,...,n} and {O; : i =1,...,n} be n-stars
for the space X. Let K1 = X —U{G,; :i=1,...,n}, and let (Y1, f1) and (Y2, f2) be the
n-point compactifications determined by the n-stars. Then (Y7, f1) is equivalent to (Ya, f2)
if and only if there exists a permutation o of {1,...,n} such that (K1 UG;) N (X — Oy;))
is compact for each 1.

Outline of proof: Let Y1 = X U{p1,...,pn} and Yo = X U{q1,..., ¢, } with topologies
and embeddings as described above. First assume the two compactifications are equivalent,
so that there is a homeomorphism h : Y7 — Y5 with ho f1 = fs, i.e., h|x is the identity map.
h induces a permutation o, where o (i) = j when h(p;) = ¢;. Fix i. Since {g,(;)} U Oy is
open in Y3, its inverse image under h, {p;} U Oq;, is open in Y7, so that (X — O, ;) N G;
has compact closure in X. It follows easily that the X-closed set (K1 UG;)N (X —Og(;)) is
contained in a compact set and so is compact itself. For the converse, define h : Y7 — Yo
by h(x) = x for x € X and h(p;) = qy(;)- For O open in Y3, h=10]N X = ON X, which is
open in X. If p; € h=1[0], then (X — O) NG, is contained in [(K1 UG;) N (X — Oy;))] U
[(X = O) N Ogy;y] and so has compact closure. Thus h is continuous. Clearly h is the
homeomorphism required to show that the two compactifications are equivalent.

Let IR denote the reals, € the complex plane, and IR™ m-dimensional space, all with
the usual topologies. Magill presents the following examples.

Corollary R5.1.6 Cand IR™ with m > 2 do not have n-point compactifications for
n > 2.

Proof: By R5.1.3 it is sufficient to show the non-existence of 2-point compactifications.
Deny and let {G1, G2} be a 2-star. Let B be a ball containing the complement of G UGs.
For these spaces, the complement of B must be connected but {G1, G2} would induce a
separation. Contradiction.

Corollary R5.1.7 IR has a 2-point compactification but does not have an n-point
compactification for n > 3.

Proof: {(—00,0),(0,00)} is a 2-star for IR . Now suppose {G1,G2,G3} is a 3-star
for R , and let IR—(G1 U G2 U G3) be contained in [a,b]. Since (—oo,a) and (b, 00) are
connected, each has non-empty intersection with at most one ;. The leftover GG; would
have to be contained in [a, b], which leads to a contradiction.

Corollary R5.1.8 All 2-point compactifications of IR are equivalent.

Proof: Let {G1,G2} and {O1,02} be 2-stars of R |, let K1 =IR—(G71 U G3), and
suppose K1 C [a,b]. Since (—oo,a) and (b, c0) are both connected, each must be entirely
contained in one G; and one O;. Use that fact to define 0. Without loss of generality,
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assume (—o0,a) is a subset of G1 and O, (1), while (b, 00) is contained in G2 and O, (y).
Then, for 7 € {1,2}, the closed set (K1 UG;) N (R~0,(;)) is contained in [a, b], and so the
compactifications are equivalent by R5.1.5.

For what follows certain equivalence relations closely related to n-stars will be used.
As is clear from the following definition, each n-compatible equivalence relation on X
determines one n-star, while an n-star determines at least one n-compatible equivalence
relation.

Definition R5.1.9 Let (X,7) be a Ty space. An equivalence relation £ on X is
n-compatible provided F has finitely many distinct equivalence classes, exactly n of which
form an n-star of X.

If F is an n-compatible equivalence relation on X, (Y,tg) will denote the n-point
compactification determined as above by the associated n-star, and 7(F) will denote the
topology for Y. The following facts show that these notions simplify in the discrete case.

Proposition R5.1.10 Let X be an infinite discrete space and let E be an equiva-
lence relation on X. Then E is n-compatible if and only if F has finitely many distinct
equivalence classes, exactly n of which are infinite.

Proof: This follows easily because distinct equivalence classes must be disjoint and
compactness is equivalent to finiteness in a discrete space.

Proposition R5.1.11 Let X be an infinite discrete space and E an n-compatible
equivalence relation on X. Let {e1,...,e,} be the distinct infinite equivalence classes of
E. Then 7(E)={OCY :p, € O= (X —0O)Ne; is finite }.

Proof: This follows easiliy since every X N O is open and having compact closure in
X is equivalent to finiteness.

Proposition R5.1.12 Let X be an infinite discrete space and let D and E be n-

compatible equivalence relations on X. Let {di,...,d,} and {eq,...,e,} be the distinct
infinite equivalence classes of D and E respectively. Then (Y, tp) and (Y, tg) are equivalent
compactifications if and only if there is a permutation o of {1,...,n} with the property

that d; N (X — e,(;)) is finite for each i.

Proof: This merely restates R5.1.5 in the present context.

Magill uses infinite discrete spaces as examples which have infinitely many non-
equivalent n-compactifications for n > 2. Such examples are implicit in R5.1.12. It also
provides simple examples of non-equivalent compactifications which are homeomorphic.
With X discrete, it can be shown that, in the notation of R5.1.12, (Y, 7(D)) and (Y, 7(F))
are homeomorphic if | X| = Xg or if a o exists such that |d;| = |e,(;)| for each i.

Uniform Space Constructions

Basic facts and notation for uniform spaces, which will be used in this subsection, can
be found in [6].

Definition R5.2.1 [1] Let E be an equivalence relation on set X. Ug denotes
{U:XxX2UDE}.

Lemma R5.2.2 [1] Let £ be an equivalence relation on X. Then U is a uniformity
for X, and Ug is totally bounded if and only if E has finitely many distinct equivalence
classes.

Proof: The key to the first assertion is that EF'o £ = F; the second follows easily since
total boundedness is, in this case, equivalent to the equation X = (J;_, Elx;] for some
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finite set x1 ... xy,.

Recall the following notation from [8]: For (X, 7) a non-compact locally compact
Hausdorff space, U,,, denotes {U : U 2D U?:l O; x O; where Oq,...,0, are an open cover
of X and at least one O; has a compact complement}. It is shown in [8] that U,, is a
totally bounded uniformity with 7(U,,) = 7 and that a separated completion of (X,U,,)
determines the compactification class of the one-point compactification for X, i.e., in the
notation of [8], Wo(Uy) = [(XT,¢T)]. Also recall that 7B(X) denotes the set of totally
bounded uniformities on X that generate 7.

Proposition R5.2.3 Let (X, 7) be a non-compact, locally compact T3 space. Let E
be an n-compatible equivalence relation on X with each E equivalence class open in 7.
Then U,,, VUE € TB(X) and \I/()(Z/{m \/Z/{E) = [(Y, LE)]

Proof: By P2.13 U,,, VUE is totally bounded and and by P2.14 7(U,, VUE) = TV T(UE).
Since E[z] € 7 for all x, 7(Ug) C 7 and so U, VUE € TB(X).

Now let Oq,..., O, denote the equivalence classes of ' which form the n-star, and let
V € TB(X) be such that Wo(V) = [(Y,tg)]. Note that V is simply the subspace uniformity
on X induced from the unique uniformity for Y, i.e., the collection of all neighborhoods
of the diagonal in Y x Y. (See P2.4 in [6].) One such neighborhood is N = | J*7 G x G,
where G; = O; U {p;} for i =1,...,n and Gy41,...,G,; are the remaining equivalence
classes of E. Clearly NN (X x X) = E and so Ug C V. Since [(X+,.7)] < [Y,tEg)], by
R15U,, CV. ThusU,, VU C V.

To verify the reverse containment, let V' € V, and let M be a neighborhood of the
diagonal in Y such that V = (X x X) N M. For each = € X, there exists O, € 7 with
O, x O, C M. Also there exist Hy,...,H, open in Y with p, € H; and H; x H; C M.
For S = U ,0;, the complement is compact and so there is a finite set Ay such that
X —SCU{O,; 1z € Ap}. Let Uy = (U{O, x Oy : € Ap}) U (S x S). Clearly Uy € Uy,.
Since p; € H; and each O; is clopen, T; = (X — H;) NO; is compact, and so there is A; such
that TZ Q U{OI X Ol- 1T e Al} Let UZ = (U{Om X OI X e Al}) U (X —Tl) X (X —Tl)
Then Uy, ..., U, are also in U,,. To finish it is sufficient to show that ([N}, ,U;] N E) C V.
Let (z,y) be in the intersection with x # y. If (z,y) is in U{Oy x Oy : x € A;} for any i,
clearly (z,y) is in V. Thus assume (z,y) isin S x S and (X —T;) x (X — T;) for every i.
Since (z,y) is in both E and S x S, z,y € Oj for some j. Then z,y ¢ T; implies z,y € H;.
Thus (z,y) € H; x H;, which yields (z,y) € V.

Proposition R5.2.4 Let X be an infinite discrete space. Let E be an n-compatible
equivalence relation on X. Then U, VUE € TB(X) and Vo(U,, VUE) = [(Y,tE)].

Proof: In the discrete case the assumption that every FE-equivalence class is open is
automatically satisfied. This is a special case of R5.2.3.

Note that for two n-compatible equivalence relations on a discrete X, E and F', R5.1.12
and R1.5 can be combined to characterize U,,, VUE = U,,, V Ur. It can also be shown that
(X, U VUE) and (X,U,, V Ur) are unimorphic if there ia a one-to-one correspondence
between the infinite equivalence classes of ' and F' such that corresponding classes have
the same cardinality. This leads to examples of unimorphic spaces which determine non-
equivalent compactifications.

Normal Basis Constructions for Discrete Spaces
Basic facts and notation used here can be found in [7]. Throughout this subsection
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X will denote an infinite discrete space and E an n-compatible equivalence relation on X
with distinct infinite equivalence classes C1,...,C,.

Definition R5.3.1 Let S C X and let A C {1,...,n}. S is associated with A if and
only if SN C; is finite for all i € A and (X —S) N C; is finite for all i ¢ A.

Definition R5.3.2
Z(E) ={S C X : S is associated with A for some A C {1,...,n}}.

Proposition R5.3.3 Z(F) is a normal basis for X.

Proof: Note that finite subsets of X are associated with {1,...,n} and so are in Z(F).
Also, if Z € Z(F) is associated with A, then X — Z is associated with {1,...,n} — A and
thus is also in Z(FE). Since x ¢ S means S C X — {z}, Z(F) is a base for the closed
sets. For 71,7, € Z(F) associated with Ay, As respectively, Z; U Zs is associated with
A1 N Ay and Z; N Z, is associated with A; U Ag. Thus Z(F) is closed under finite unions
and intersections. The third requirement of definition P3.1 is satisfied because, for = ¢ S,
{z} € Z(E) and SN {z} = (. The fourth is equally straightforward: for Z;, Z> € Z(F)
with Z1 N Zs =0, X — Z; and X — Z5 are in Z(FE) and form the needed cover.

Definition R5.3.4 Let i € {1,...,n}.

Gi={5 € Z(F): S is associated with some A contained in {1,...,n} —{i}}.

Lemma R5.3.5 An element of Z(F) is associated with a unique subset of {1,...,n}.

Proof: Deny and pick Z in Z(FE) associated with both A; and A,. For any i in
(A1 — Ag) U (Agy — Ayq), both ZNC; and (X — Z) N C; must be finite, which contradicts
the assumption that C; is infinite.

Proposition R5.3.6 For i € {1,...,n}, G; is a Z(E)-ultrafilter.

Proof: The co-finite subsets of X, being associated with (), are in G;, while () is not
since it is associated with {1,...,n}. Let S1,S2 in Z(F) be associated with A; and Ag
respectively. Since S; N Ss is associated with Ay U As, clearly G; is closed under finite
intersections. If S1 € G; and S; C Ss, then Ay C A; so that Sy € G;. Thus G; is a
Z(E)-filter. Now suppose F is a Z(E)-filter with G; C F. If Z € F is associated with
A and i € A, then X — Z, which is associated with {1,...,n} — A, must be in G;. That
implies Z N (X — Z) € F, a contradiction. Thus G; is a Z(F)-ultrafilter.

Proposition R5.3.7 The distinct, non-point ultrafilters in w(Z(FE)) are G1,...,G,.

Proof: For all i, C; is associated with {1,...,n} — {i} and so C; € G; and G; # G; if
j # 1. Since all finite sets are associated with {1,...,n}, the ultrafilter G; does not contain
any finite set. Thus Gy,...,G, are distinct, non-point Z(F)-ultrafilters. Now let F be a
Z(E)-ultrafilter with F # G; for all i. Pick F; associated with A; such that F; € F but
F; ¢ G;. Then i € A, for each i. Let FF' = NI, F;. F is in F and is associated with
ur A, = {1,...,n}. That means F is finite. Since only point-ultrafilters contain any
finite sets, F must be F, for some zx.

Proposition R5.3.8 (w(Z2(F)),tz(g)) is equivalent to (Y, vp).

Proof: Define h : w(Z(F)) — Y by h(F,) = = and h(G;) = p;. Clearly h is one-to-
one and onto, and h o tzg) = tg. Since the spaces are compact and T3, continuity of
h is sufficient to show that h is the homeomorphism required for equivalence. Let F' be
closed in Y and suppose F ¢ h™1[F]. If F = F, for some x, then h=}[F] C (X — {z})
and F ¢ (X — {z})¥. Now suppose F = G; for some i. Then p; € Y — F so that
(X —(Y —F))NC;is finite. Let Z = (X — (Y — F))U(U{C;j : j # i}. Then Z is associated

5



with {i} so that Z € Z(E), Z ¢ G;, and Z € G; for j # i. Since X N F C Z, it follows
that h=1[F] C Z* and G; ¢ Z*. From the description of the closed sets in w(Z(E)) (P3.6
in [7]), h=1[F] is closed and so h is continuous as required.

Note that R5.1.2 and R5.3.8 show that every finite-point compactification of a discrete
space can be constructed from a normal basis.

Albert J. Klein 2003
http://www.susanjkleinart.com/compactification/
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Added 2013

This addendum points out that not every finite point compactification class corre-
sponds to a uniformity of the form U,, VUE.

Lemma R5.Add.1 Let X be a set and let E be an equivalence relation. Then for
every x € X, F[z| is 7(Ug)-clopen.

Proof: Let x be in X and let ¢t € E[x]. E[t] is a 7(Ug)-neighborhood of ¢ and
E[t] = EJz] since E-sections are equivalence classes and zEt. Thus E[z] is a 7(Ug)-
neighborhood of each of its points and so E|z] is open. The complement of E[z] is the
union of the other equivalence classes and so open. Thus E[x] is also 7(Ug)-closed.

Example R5.Add.2 Let X = (0,1) and & be the usual uniformity on X. Let
Y =[0,1] and let f: X — Y be the inclusion map. Since U is the subspace uniformity of
the usual uniformity on Y, U corresponds to the compactification class of (Y, f). Let U,,
be the uniformity for X corresponding to the one-point compactification. Since (Y, f) is
a two-point compactification, U, is a proper subset of U. Suppose there is an equivalence
relation £ on X such that U, VU = U. Since X is connected and E|z] is clopen in
TUE) CT7(Un VUE) =7U), E =X x X. But then U,,, VUE = U,y,, a contradiction.

Added 2018
Much of this section focused on finite point compactifications of discrete spaces. This
note points out a way to construct non-discrete spaces with finite point compactifications
and characterizes spaces whose Stone-Cech compactification is a finite point compactifica-
tion.
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Lemma R5.Add.3 Let (X,7) be a T3, space, let (Y, f) be a T> compactification of
(X,7), and let S CY — f[X]. Let Z =Y — S have the relative topology from Y. Then
(Y, s) is a Ty compactification of Z, where s : Z — Y is the inclusion map.

Proof: Since the dense f[X] is contained in Z, Z is dense in Y. Since Z has the
relative topology, s is an embedding.

In the last lemma Y — s[Z] = S and so, if S is finite, Z has a finite point compactifi-
cation.

Lemma R5.Add.4 Let (X,7) be a T31 space, let (8X,:) be the Stone-Cech com-
pactification of (X, 7), and let S C X —([X]. Let Z = X — S have the relative topology
from SX. Then (8X,s) is the Stone-Cech compactification of Z, where s : Z — $X is the
inclusion map.

Proof: It is sufficient to show that every continuous map from Z to a compact T5 space
has a contiuous extension to X. Let h : Z — K be continuous, where K is compact and
T5. Let g be h restricted to ¢[X]. Then g has a continuous extension G' to fX. Then
Glix) = 9 = h|,;x)- Since «[X] is dense in Z and K is Tz, G|z = h, i.e., G is a continuous
extension of h.

By choosing S finite, one obtains a space whose Stone-Cech compactification is a finite
point compactification. The rest of this added note characterizes such spaces.

Lemma R5.Add.5 Let (X,7) be a T3% space, let (Y, f) be a T, compactification of
(X, 7), let A be a dense subset of X, and let 74 be the relative topology on A from X.
Then (Y, f|a) is a Ty compactification of (A, 74).

Proof: Since f is an embedding and A has the relative topology, f|a is also an
embedding. Clearly its image is f[A]. Since A is dense in X, f[A] is dense in f[X], which
is dense in Y. Thus f[A] is dense in Y.

Lemma R5.Add.6 Let (X, 7) be a T3% space, let (Y, f) and (Z, g) be a T» compact-
ifications of (X, 7), and let A be a dense subset of X. If (Y, f|4) is equivalent to (Z, g|a),
then (Y, f) is equivalent to (Z, g).

Proof: Assume ¢ : Y — Z is a homeomorphism with ¢ o fla = (¢ o f)la = g|a-
Since these are continuous maps into the 75 space Z which agree on a dense subset of the
domain, ¢ o f = g. By definition (Y, f) is equivalent to (Z, g).

Proposition R5.Add.7 Let (X,7) be a non-compact T31 space which has exactly
M distinct compactification classes, where M is a positive integer. Then its Stone-Cech
compactification, (8X,¢), is a finite point compactification with |8X — ([X]| < M.

Proof: Assume |fX —¢[X]| > M+1. Let Y = X —{t1,...,tamr41}, wherety, ... targ1
are distinct elements of X — ([X]. By R5.Add.3 X with the inclusion map is a com-
pactification of Y with [X — Y| = M + 1. For each 1 < k < M + 1, by R5.1.3, there
is a k-point compactification (Z, fr) of Y. By R5.1.4, if k # I, (Z, fr) is not equivalent
to (Zi, fi). Since ¢[X] is dense in Y, by R5.Add.6, these M + 1 compactifications of ¥
induce M + 1 non-equivalent compactifications of ¢[X]. But ¢[X], a homeomorph of X,
has exactly M distinct compactification classes, a contradiction.

The next few results will yield the other half of the characterization.

Lemma R5.Add.8 Let (X, 7) be a T3, space, let (Y, f) and (Z, g) be a Ty compact-
ifications of (X, 7), and let ¢ : Y — Z be continuous and onto with ¢ o f = g. Then, for

every x € X, ¢ [{g(z)}] = {f(x)}.



Proof: Fix z € X. Since ¢(f(x)) = g(x), f(z) € 6~ [{g()}]. Let y € ¢~ [{g(x)}].
There is a net S : D — X such that f oS converges to y. By continuity, ¢ o (f o 5)

converges to ¢(y) = g(z). Thus (¢ o f) oS = go S converges to g(x). Since g : X — g[X]
is a homeomorphism, S converges to x and so f oS converges to f(x). Since limits are
unique in a Ty space, y = f(z).

The relation [(Z,g)] < [(Y, f)] is defined by the existence of ¢ as in the previous
lemma, and such a ¢ must be unique. P(Z) will denote the partition of Y induced by ¢,
ie., {07 {z}]: 2 € Z}.

Next recall some general facts: If A is compact, B is Tb, and m : A — B is continuous
and onto, then m is a quotient map and so B is homeomorphic to the quotient space A/E,
where E is the equivalence relation determined by the partition {m~1[{b}] : b € B}. The
map b — m~1[{b}] is a homeomorphism.

Lemma R5.Add.9 Let (X,7) be a T31 space and let (Y, f), (W,h) and (Z,g) be
T, compactifications of (X, 7) with [(Z,g)] < [(Y, f)] and [(W,h)] < [(Y, f)]. Assume
P(Z)=P(W). Then (Z,g) is equivalent to (W, h).

Proof: Let ¢ : Y — Z and v : Y — W be continuous and onto with ¢p o f = ¢
and ¥ o f = h. Since P(Z) = P(W), Z and W are homeomorphic to the same quotient
space, Y/E, where FE is the equivalence relation determined by P(Z) = P(W). Let p :
Z — Y/E and 0 : W — Y/E be the homeomorphisms given by p(z) = ¢~ 1[{z}] and
o(w) = ¥ H{w}]. Then 67! o p is a homeomorphism from Z onto W. It is sufficient to
show (071 op)og=h. Let z € X. Then po g(z) = ¢~ [{g(x)}] = {f(x)} by R5.Add.8.
By the same lemma, ¢~ 1[{h(z)}] = {f(z)} so that o= ({f(x)}) = h(x). Thus the claim
holds.

Proposition R5.Add.10 Let (X, 7) be a non-compact T51 space and let (3X,¢) be

the Stone-Cech compactification of (X, 7). Then 3X is a finite point compactification of
X if and only if the number of distinct compactification classes of (X, 7) is finite.

Proof: The sufficiency of the condition follows from R5.Add.7. For necessity, assume
£X is a finite point compactification of X. For any (Y, f), a compactification of (X, 1),
since [(Y, F)] < [(8X,¢)], Y is homeomorphic to a quotient space SX/E. By R5.Add.8 the
partition determining F is the union of {{¢(z)} : x € X} and a partition of X — ([X].
Since X — ¢[X] is finite, it has finitely many partitions. By R5.Add.9 the number of
distinct compactification classes of (X, 7) is finite.

Added 2024

Given (Y, f), a T> compactification of a T3% space (X, 7), the compact T5 space Y will
be called the target space of the compactification. In what follows, an example of two non-
equivalent finite-point compactifications with homeomorphic target spaces is presented.
The target space of the supremum is not homeomorphic to either. Finally, it is shown that
all 2-point compactifications of a countably infinite discrete space have homeomorphic
target spaces.

Lemma R5.Add.11 Let (X, 7) be a discrete topological space with X infinite. Let
A be an infinite subset of X with an infinite complement. Then {A, X — A} is a 2-star for
X.

Proof: By hypothesis {A, X — A} is a disjoint pair of non-compact open sets. The
complement of their union is (), which is compact. By definition {A, X — A} is a 2-star.
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Lemma R5.Add.12 Let (X,7) be a discrete topological space with X countably
infinite. Let A, B be infinite subsets of X with both having infinite complements. Then
the 2-point compactifications generated by the 2-stars {A, X — A} and {B, X — B} have
homeomorphic target spaces.

Proof: Representations of the compactifications as in R5.1.1 will be used:

Y = XU{a1,a2} and Z = X U{by, ba}, where a1 # as, by # be, and X N{ay,as,b1,b2} = 0.
The topology for Y is «, where O C Y is in « if and only if a; € O implies (X —O)N A
is finite and as € O implies (X — O) N (X — A) is finite. The topology for Z is (3, where
G C Y isin f if and only if by € G implies (X — G) N B is finite and by € G implies
(X — G) N (X — B) is finite. The embeddings are the inclusion maps, f : X — Y and
g : X — Z. By hypothesis A, B and their complements are all countably infinite and
so there is o, a permutation of X, such that ¢[A] = B. Define h : Y — Z by h|x = o,
h(a1) = by, and h(ag) = by. Clearly, h is one-to-one and onto. Now let G € (. It is
easy to check that X — h™1[G] = h™'[X — G]. Suppose a; € h™'[G]. Then b; € G
and so (X — G) N B is finite. Then (X —h71[G]) N A = h™1[X — G] N h~![B], which is
h=1[(X — G) N B] and finite, since h is one-to-one. Next suppose az € h™1[G] so that
b € G. Since X — A = X — h™'[B] = h™![X — B], a similar argument shows that
(X —h71[G]) N (X — A) is finite. By definition h™1[G] € a so that h is continuous. Since
Y is compact and Z is Ts, h is a homeomorphism.

Example R5.Add.13 Let X =IN have the discrete topology, let A be the even
positive integers, and let B be the multiples of 3. Let (Y, f) and (Z,g) be the 2-point
compactifications determined as in the previous proof by the 2-stars {A, X — A} and
{B, X — B} respectively. Since AN B and AN (X — B) are both infinite, by R5.1.5 (Y, f)
and (Z,g) are not equivalent. By the previous lemma the target spaces, Y and Z, are
homeomorphic.

Example R5.Add.14 Continue with X, (Y, f), and (Z, g) as in the previous example.
Let W be the closure in Y x Z of {(z,z) : x € X} and let w : X — W by w(x) = (z,x).
By R3.1.1 and R3.1.2 (W, w) is a T5 compactification of X and represents the supremum
class for (Y, f) and (Z,g). Let S = {(x,z) : x € X} U ({a1,a2} x {b1,b2}. It is claimed
that W = S. First, (Y x Z) — S isopenin Y x Z: Let (p,q) € (Y x Z)—S. If p,q € X,
{(p,q)} isopeninY x Z. If p € X and q € {b1,b2}, (p,q) is in one of the Y x Z-open
sets {p} x (B — {p}) U{b1}) and {p} x (X — B) — {p}) U {b2}), both of which are
contained in (Y x Z) — S. If p € {a1,a2} and ¢ € X, proceed similarly by using the
Y-open sets (A — {q}) U{a1} and ((X — A) — {q}) U {az}. Thus (Y x Z) — S is open,
S is closed, and W C S. Next it will be shown that {aj,as} x {b1,b2} € W. There
are four cases. First, (ag,b1) will be shown to be in W. Let (a2,b1) € O x G, where
O € a and G € B. By definition of the topologies (X —O)N (X — A) and (X —G)NB
are both finite. By the choice of A and B, (X — A) N B is infinite and there is ¢ in
(X—A)NBwitht ¢ (X-0)N(X—-A)U((X —-—G)NB). Then t is in both O and
G, ie., (t,t) € {(z,z) : x € X} N (O x G). Thus (az,b1) € W. The other three cases
are done in a similar way by using the appropriate choice from the infinite sets A N B,
AN(X —B), and (X —A)N(X — B). It follows that W = S. Finally, suppose W and Y are
homeomorphic, and let H : W — Y be a homeomorphism. For any ¢t in X, {(¢,¢)} is open
in W. Since the singletons {a1} and {as} are not open in Y, H((¢,t)) must be in X. Also,
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no singletons from {ai,as} x {b1,b2} are open and so H~*(¢) must be in {(z,z) : x € X}
for all t € X. Thus H[{(z,z) : « € X}|] = X and so H[{a1,az2} x {b1,b2}] = {a1,a2},
which contradicts the assumption that H is one-to-one. No such H exists, i.e., W and Y
are not homeomorphic.

Lemma R5.Add.15 Let (X,7) be a discrete topological space with X countably
infinite and let (Y, f) be a 2-point compactification of X. Then X has an infinite subset
A with X — A also infinite such that (Y, f) is equivalent to the 2-point compactification
generated by the 2-star {4, X — A}.

Proof: By R5.1.2 there is a 2-star {G1, G2} for X such that the 2-point compact-
ification generated by {G1,G2} is equivalent to (Y, f). Let K = X — (G1 UG3). By
definition of a 2-star, K must be finite and both K U G; and K U G5 are both infinite.
Let A= KUG;. Since GoNGy =0 =GyNK, X - A= (Gy. Since K is finite and
K UG, is infinite, X — A is infinite. R5.1.5 will be applied with O; = A and O = X — A.
Let o be the identity permutation of {1,2}. (KUG;)N(X —01) = AN(X — A) =0,
which is finite. In addition, (K U G2) N (X — O2) = (K UG2) N A = K, which is finite.
By R5.1.5 the 2-point compactification generated by {G1, G2} is equivalent to the 2-point
compactification generated by {A, X — A}, and so the conclusion holds.

Corollary R5.Add.16 All 2-point compactifications of a countably infinite discrete
space have homeomorphic target spaces.

Proof: Let X be a countably infinite discrete space, and let (Y, f) and (Z,g) be
2-point compactifications of X. By R5.Add.15 there exist A and B, infinite subsets of
X, with both X — A, X — B also infinite such that (Y, f) is equivalent to the 2-point
compactification generated by the 2-star {A, X — A} and (Z,g) is equivalent to to the
2-point compactification generated by the 2-star { B, X — B}. Since equivalent spaces have
homeomorphic target spaces and homeomorphism is transitive, it follows from R5.Add.12
that Y is homeomorphic to Z.

Added Reference
9. This website, R3: Representation of Suprema
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